Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 268, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950262

RESUMO

Colorectal cancer (CRC) is one of the foremost causes of cancer-related deaths. Lately, a close connection between the course of CRC and the intestinal microbiota has been revealed. Vitamin K2 (VK2) is a bacterially derived compound that plays a crucial role in the human body. Its significant anti-cancer properties may result, inter alia, from a quinone ring possessing a specific chemical structure found in many chemotherapeutics. VK2 can be supplied to our body exogenously, i.e., through dietary supplements or fermented food (e.g., yellow cheese, fermented soybeans -Natto), and endogenously, i.e., through the production of bacteria that constantly colonize the human microbiome of the large intestine.This paper focuses on endogenous K2 synthesized by the most active members of the human gut microbiome. This analysis tested 86 intestinally derived bacterial strains, among which the largest VK2 producers (Lactobacillus, Bifidobacterium, Bacillus) were selected. Moreover, based on the chosen VK2-MK4 homolog, the potential of VK2 penetration into Caco-2 cells in an aqueous environment without the coexistence of fats, pancreatic enzymes, or bile salts has been displayed. The influence of three VK2 homologs: VK2-MK4, VK2-MK7 and VK2-MK9 on apoptosis and necrosis of Caco-2 cells was tested proving the lack of their harmful effects on the tested cells. Moreover, the unique role of long-chain homologs (VK2-MK9 and VK2-MK7) in inhibiting the secretion of pro-inflammatory cytokines such as IL-8 (for Caco-2 tissue) and IL-6 and TNFα (for RAW 264.7) has been documented.

2.
Biometals ; 29(6): 1019-1033, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27757565

RESUMO

Translocation of bacteria, primarily Gram-negative pathogenic flora, from the intestinal lumen into the circulatory system leads to sepsis. In newborns, and especially very low birth weight infants, sepsis is a major cause of morbidity and mortality. The results of recently conducted clinical trials suggest that lactoferrin, an iron-binding protein that is abundant in mammalian colostrum and milk, may be an effective agent in preventing sepsis in newborns. However, despite numerous basic studies on lactoferrin, very little is known about how metal saturation of this protein affects a host's health. Therefore, the main objective of this study was to elucidate how iron-depleted, iron-saturated, and manganese-saturated forms of lactoferrin regulate intestinal barrier function via interactions with epithelial cells and macrophages. For these studies, a human intestinal epithelial cell line, Caco-2, was used. In this model, none of the tested lactoferrin forms induced higher levels of apoptosis or necrosis. There was also no change in the production of tight junction proteins regardless of lactoferrin metal saturation status. None of the tested forms induced a pro-inflammatory response in Caco-2 cells or in macrophages either. However, the various lactoferrin forms did effectively inhibit the pro-inflammatory response in macrophages that were activated with lipopolysaccharide with the most potent effect observed for apolactoferrin. Lactoferrin that was not bound to its cognate receptor was able to bind and neutralize lipopolysaccharide. Lactoferrin was also able to neutralize microbial-derived antigens, thereby potentially reducing their pro-inflammatory effect. Therefore, we hypothesize that lactoferrin supplementation is a relevant strategy for preventing sepsis.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Lactoferrina/química , Lactoferrina/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Apoproteínas/química , Apoptose/efeitos dos fármacos , Células CACO-2 , Bovinos , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Gastroenterite/prevenção & controle , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ferro/química , Lactoferrina/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Manganês/química , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA