Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 139(6): 845-858, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724565

RESUMO

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac), and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used 2 complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1-null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow 2 to 6 weeks after Hbo1 deletion. Hbo1-deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors. The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-, and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1, and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas , Histona Acetiltransferases , Animais , Células Cultivadas , Senescência Celular , Deleção de Genes , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Camundongos Endogâmicos C57BL
2.
PLoS Negl Trop Dis ; 15(7): e0009597, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310596

RESUMO

Soil-transmitted helminths, such as roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms (Necator americanus and Ancylostoma spp.), are gastrointestinal parasites that occur predominantly in low- to middle-income countries worldwide and disproportionally impact children. Depending on the STH species, health status of the host and infection intensity, direct impacts of these parasites include malnutrition, anaemia, diarrhoea and physical and cognitive stunting. The indirect consequences of these infections are less well understood. Specifically, gastrointestinal infections may exert acute or chronic impacts on the natural gut microfauna, leading to increased risk of post-infectious gastrointestinal disorders, and reduced gut and overall health through immunomodulating mechanisms. To date a small number of preliminary studies have assessed the impact of helminths on the gut microbiome, but these studies are conflicting. Here, we assessed STH burden in 273 pre-school and school-aged children in Tha Song Yang district, Tak province, Thailand receiving annual oral mebendazole treatment. Ascaris lumbricoides (107/273) and Trichuris trichiura (100/273) were the most prevalent species and often occurred as co-infections (66/273). Ancylostoma ceylanicum was detected in a small number of children as well (n = 3). All of these infections were of low intensity (<4,999 or 999 eggs per gram for Ascaris and Trichuris respectively). Using this information, we characterised the baseline gut microbiome profile and investigated acute STH-induced alterations, comparing infected with uninfected children at the time of sampling. We found no difference between these groups in bacterial alpha-diversity, but did observe differences in beta-diversity and specific differentially abundant OTUs, including increased Akkermansia muciniphila and Bacteroides coprophilus, and reduced Bifidobacterium adolescentis, each of which have been previously implicated in STH-associated changes in the gut microfauna.


Assuntos
Anti-Helmínticos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Helmintíase/tratamento farmacológico , Mebendazol/uso terapêutico , Solo/parasitologia , Anti-Helmínticos/administração & dosagem , Criança , Pré-Escolar , Fezes/parasitologia , Feminino , Helmintíase/epidemiologia , Humanos , Masculino , Administração Massiva de Medicamentos , Mebendazol/administração & dosagem , Tailândia/epidemiologia
3.
J Hum Genet ; 62(3): 343-353, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27904152

RESUMO

Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Evolução Biológica , DNA Mitocondrial/história , Feminino , Fluxo Gênico , Haplótipos , História do Século XXI , História Antiga , Humanos , Masculino , Havaiano Nativo ou Outro Ilhéu do Pacífico/história , Oceania , Paleontologia , Filogeografia , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA