Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
2.
Integr Biol (Camb) ; 9(12): 956-967, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29168874

RESUMO

In vitro models of the neuromuscular junction (NMJ) are emerging as a valuable tool to study synaptogenesis, synaptic maintenance, and pathogenesis of neurodegenerative diseases. Many models have previously been developed using a variety of cell sources for skeletal muscle and motoneurons. These models can advanced by integrating beneficial features of the native developmental milieu of the NMJ. We created a functional in vitro model of NMJ by bioreactor cultivation of transdifferentiated myocytes and stem cell-derived motoneurons, in the presence of electrical stimulation. In conjunction with a coculture medium, electrical stimulation resulted in improved maturation and function of motoneurons and myocytes, as evidenced by mature cellular structures, increased expression of neuronal and muscular genes, clusterization of acetylcholine receptors (AChRs) in the vicinity of motoneurons, and the response to glutamate stimulation. To validate the model and demonstrate its utility for pharmacological testing, we documented the potency of drugs that affect key pathways during NMJ signal transduction: (i) acetylcholine (ACh) synthesis, (ii) ACh vesicular storage, (iii) ACh synaptic release, (iv) AChR activation, and (v) ACh inactivation in the synaptic cleft. The model properly responded to the drugs in a concentration-dependent manner. We thus propose that this in vitro model of NMJ could be used as a platform in pharmacological screening and controlled studies of neuromuscular diseases.


Assuntos
Reatores Biológicos , Neurônios Motores/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Animais , Separação Celular , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Estimulação Elétrica , Ácido Glutâmico/química , Proteínas de Fluorescência Verde/metabolismo , Magnetismo , Camundongos , Neurônios Motores/fisiologia , Células Musculares/citologia , Células-Tronco/citologia
3.
J Clin Invest ; 125(2): 796-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25555215

RESUMO

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.


Assuntos
Diferenciação Celular , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Obesidade/metabolismo , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Nucleares/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
4.
J Neurosci ; 33(2): 574-86, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303937

RESUMO

Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1, and column-specific markers that mirror those observed in vivo in human embryonic spinal cord. They also exhibited spontaneous and induced activity, and projected axons toward muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1(+)/LHX3(-)). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays.


Assuntos
Extremidades/inervação , Neurônios Motores/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Axônios/fisiologia , Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Embrião de Galinha , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Técnicas de Patch-Clamp , Complexo de Inativação Induzido por RNA , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Medula Espinal/citologia , Medula Espinal/embriologia , Transplante de Células-Tronco/métodos , Fatores de Transcrição/genética
5.
J Pharmacol Exp Ther ; 324(1): 342-51, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17940199

RESUMO

GPR35 is a G protein-coupled receptor recently "de-orphanized" using high-throughput intracellular calcium measurements in clonal cell lines expressing a chimeric G-protein alpha-subunit. From these screens, kynurenic acid, an endogenous metabolite of tryptophan, and zaprinast, a synthetic inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase, emerged as potential agonists for GPR35. To investigate the coupling of GPR35 to natively expressed neuronal signaling pathways and effectors, we heterologously expressed GPR35 in rat sympathetic neurons and examined the modulation of N-type (Ca(V)2.2) calcium channels. In neurons expressing GPR35, calcium channels were inhibited in the absence of overt agonists, indicating a tonic receptor activity. Application of kynurenic acid or zaprinast resulted in robust voltage-dependent calcium current inhibition characteristic of Gbetagamma-mediated modulation. Both agonist-independent and -dependent effects of GPR35 were blocked by Bordetella pertussis toxin pretreatment indicating the involvement of G(i/o) proteins. In neurons expressing GPR35a, a short splice variant of GPR35, zaprinast was more potent (EC(50) = 1 microM) than kynurenic acid (58 microM) but had a similar efficacy (approximately 60% maximal calcium current inhibition). Expression of GPR35b, which has an additional 31 residues at the N terminus, produced similar results but with much greater variability. Both GPR35a and GPR35b appeared to have similar expression patterns when fused to fluorescent proteins. These results suggest a potential role for GPR35 in regulating neuronal excitability and synaptic release.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Gânglio Cervical Superior/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , DNA Complementar/genética , Células HeLa , Humanos , Ácido Cinurênico/farmacologia , Masculino , Toxina Pertussis , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Purinonas/farmacologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA