Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Helminthol ; 96: e16, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238288

RESUMO

Praziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure. This reinforces the urgency in finding alternative therapeutic options that could replace or complement PZQ. We explored the potential of medicinal plants commonly used by indigenes in Kenya for the treatment of various ailments including malaria, pneumonia, and diarrhoea for their antischistosomal properties. Employing the Soxhlet extraction method with different solvents, seven medicinal plants Artemisia annua, Ajuga remota, Bredilia micranta, Cordia africana, Physalis peruviana, Prunus africana and Senna didymobotrya were extracted. Qualitative phytochemical screening was performed to determine the presence of various phytochemicals in the plant extracts. Extracts were tested against Schistosoma mansoni newly transformed schistosomula (NTS) and adult worms and the schistosomicidal activity was determined by using the adenosine triphosphate quantitation assay. Phytochemical analysis of the extracts showed different classes of compounds such as alkaloids, tannins, terpenes, etc., in plant extracts active against S. mansoni worms. Seven extracts out of 22 resulted in <20% viability against NTS in 24 h at 100 µg/ml. Five of the extracts with inhibitory activity against NTS showed >69.7% and ≥72.4% reduction in viability against adult worms after exposure for 24 and 48 h, respectively. This study provides encouraging preliminary evidence that extracts of Kenyan medicinal plants deserve further study as potential alternative therapeutics that may form the basis for the development of the new treatments for schistosomiasis.


Assuntos
Produtos Biológicos , Plantas Medicinais , Esquistossomose mansoni , Esquistossomose , Animais , Medicina Herbária , Quênia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico
2.
PLoS One ; 14(6): e0217019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31158236

RESUMO

Hookworms remain a major health burden in the developing world, with hundreds of millions currently afflicted by these blood-feeding parasites. There exists a vital need for the discovery of novel drugs and identification of parasite drug targets for the development of chemotherapies. New drug development requires the identification of compounds that target molecules essential to parasite survival and preclinical testing in robust, standardized animal models of human disease. This process can prove costly and time consuming using conventional, low-throughput methods. We have developed a novel high-throughput screen (HTS) to identify anthelmintics for the treatment of soil-transmitted helminths. Our high-throughput, plate reader-based assay was used to rapidly assess compound toxicity to Ancylostoma ceylanicum L1 larva. Using this method, we screened 39,568 compounds from several small molecule screening libraries at 10 µM and identified 830 bioactive compounds that inhibit egg hatching of the human hookworm A. ceylanicum by >50%. Of these, 132 compounds inhibited hookworm egg hatching by >90% compared to controls. The nematicidal activities of 268 compounds were verified by retesting in the egg hatching assay and were also tested for toxicity against the human HeLa cell line at 10 µM. Fifty-nine compounds were verified to inhibit A. ceylanicum egg hatching by >80% and were <20% toxic to HeLa cells. Half-maximal inhibitory concentration (IC50) values were determined for the 59 hit compounds and ranged from 0.05-8.94 µM. This stringent advancement of compounds was designed to 1) systematically assess the nematicidal activity of novel compounds against the egg stage of A. ceylanicum hookworms in culture and 2) define their chemotherapeutic potential in vivo by evaluating their toxicity to human cells. Information gained from these experiments may directly contribute to the development of new drugs for the treatment of human hookworm disease.


Assuntos
Ancylostoma/efeitos dos fármacos , Ancylostoma/fisiologia , Anti-Helmínticos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Oviposição/efeitos dos fármacos , Animais , Células HeLa , Humanos
3.
Infect Dis Poverty ; 4: 40, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26341081

RESUMO

BACKGROUND: Schistosomiasis, a parasitic disease also known as bilharzia and snail fever, is caused by different species of flatworms, such as Schistosoma mansoni (S. mansoni). Thioredoxin glutathione reductase (TGR) from S. mansoni (SmTGR) is a well-characterized drug target for schistosomiasis, yet no anti-SmTGR compounds have reached clinical trials, suggesting that therapeutic development against schistosomiasis might benefit from additional scaffolds targeting this enzyme. METHODS: A high-throughput screening (HTS) assay in vitro against SmTGR was developed and applied to a diverse compound library. SmTGR activity was quantified with ThioGlo®, a reagent that fluoresces upon binding to the free sulfhydryl groups of the reaction product GSH (reduced glutathione). RESULTS: We implemented an HTS effort against 59,360 synthetic compounds. In the primary screening, initial hits (928 or 1.56 %) showing greater than 90 % inhibition on SmTGR activity at a final concentration of 10 µM for each compound were identified. Further tests were carried out to confirm the effects of these hits and to explore the concentration-dependent response characteristics. As a result, 74 of them (0.12 %) representing 17 chemical scaffolds were confirmed and showed a great concentration-dependent inhibitory trend against SmTGR, including structures previously shown to be lethal to schistosomal growth. Of these, two scaffolds displayed a limited structure-activity relationship. When tested in cultured larvae, 39 compounds had cidal activity in 48 h, and five of them killed larvae completely at 3.125 µM. Of these, three compounds also killed adult worms ex vivo at concentrations between 5 µM and 10 µM. CONCLUSION: These confirmed hits may serve as starting points for the development of novel therapeutics to combat schistosomiasis.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Esquistossomicidas/farmacologia , Animais , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Testes de Sensibilidade Parasitária , Reprodutibilidade dos Testes , Esquistossomose/tratamento farmacológico , Bibliotecas de Moléculas Pequenas
4.
FEBS J ; 282(16): 3199-217, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26111549

RESUMO

Investigations regarding the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives revealed 3-phenoxymethyl menadiones as a novel anti-schistosomal chemical series. These newly synthesized compounds (1-7) and their difluoromethylmenadione counterparts (8, 9) were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR), which has been identified as a potential target for anti-schistosomal drugs. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. glutathione reductase (hGR) and selenium-dependent human thioredoxin reductase (hTrxR), to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively compared to hGR and hTrxR enzymes, in particular those bearing an α-fluorophenol methyl ether moiety, which improves anti-schistosomal action. Furthermore, the (substituted phenoxy)methyl menadione derivative (7) displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox cycling of SmTGR, and potent anti-schistosomal action in worms cultured ex vivo. In contrast, the difluoromethylmenadione analog 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in worms cultured ex vivo. Despite ex vivo activity, none of the compounds tested was active in vivo, suggesting that the limited bioavailability may compromise compound activity. Therefore, future studies will be directed toward improving pharmacokinetic properties and bioavailability.


Assuntos
Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Naftoquinonas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Esquistossomicidas/farmacologia , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Eletroquímica , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa/química , Glutationa Redutase/antagonistas & inibidores , Humanos , Técnicas In Vitro , Camundongos , Naftoquinonas/síntese química , Naftoquinonas/química , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Esquistossomicidas/síntese química , Esquistossomicidas/química , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
5.
J Biol Chem ; 284(42): 28977-85, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19710012

RESUMO

Schistosomiasis is a parasitic disease affecting over 200 million people currently treated with one drug, praziquantel. A possible drug target is the seleno-protein thioredoxin-glutathione reductase (TGR), a key enzyme in the pathway of the parasite for detoxification of reactive oxygen species. The enzyme is a unique fusion of a glutaredoxin domain with a thioredoxin reductase domain, which contains a selenocysteine (Sec) as the penultimate amino acid. Auranofin (AF), a gold-containing compound already in clinical use as an anti-arthritic drug, has been shown to inhibit TGR and to substantially reduce worm burden in mice. Using x-ray crystallography we solved (at 2.5 A resolution) the structure of wild type TGR incubated with AF. The electron density maps show that the actual inhibitor is gold, released from AF. Gold is bound at three different sites not directly involving the C-terminal Sec residue; however, because the C terminus in the electron density maps is disordered, we cannot exclude the possibility that gold may also bind to Sec. To investigate the possible role of Sec in the inactivation kinetics, we tested the effect of AF on a model enzyme of the same superfamily, i.e. the naturally Sec-lacking glutathione reductase, and on truncated TGR. We demonstrate that the role of selenium in the onset of inhibition by AF is catalytic and can be mimicked by an external source of selenium (benzeneselenol). Therefore, we propose that Sec mediates the transfer of gold from its ligands in AF to the redox-active Cys couples of TGR.


Assuntos
Antirreumáticos/química , Auranofina/química , Regulação da Expressão Gênica , Proteínas de Helminto/química , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Schistosoma mansoni/metabolismo , Animais , Antirreumáticos/farmacologia , Auranofina/farmacologia , Catálise , Cristalografia por Raios X/métodos , Cisteína/química , Relação Dose-Resposta a Droga , Cinética , Modelos Moleculares , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredução , Estrutura Terciária de Proteína , Selênio/química
6.
Assay Drug Dev Technol ; 6(4): 551-5, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18665782

RESUMO

Abstract: Schistosomiasis is a major neglected tropical disease that currently affects over 200 million people and leads to over 200,000 annual deaths. Schistosoma mansoni parasites survive in humans in part because of a set of antioxidant enzymes that continuously degrade reactive oxygen species produced by the host. A principal component of this defense system has been recently identified as thioredoxin glutathione reductase (TGR), a parasite-specific enzyme that combines the functions of two human counterparts, glutathione reductase and thioredoxin reductase, and as such this enzyme presents an attractive new target for anti-schistosomiasis drug development. Herein, we present the development of a highly miniaturized and robust screening assay for TGR. The 5-mul final volume assay is based on the Ellman reagent [5,5'-dithiobis(2-nitrobenzoic acid) (DTNB)] and utilizes a high-speed absorbance kinetic read to minimize the effect of dust, absorbance interference, and meniscus variation. This assay is further applicable to the testing of other redox enzymes that utilize DTNB as a model substrate.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Schistosoma mansoni/enzimologia , Esquistossomicidas/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Ácido Ditionitrobenzoico/farmacologia , Cinética , Espécies Reativas de Oxigênio/química , Proteínas Recombinantes/farmacologia
7.
PLoS Negl Trop Dis ; 2(1): e127, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18235848

RESUMO

Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 microL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC(50)s ranging from micromolar to the assay response limit ( approximately 25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases.


Assuntos
Inibidores Enzimáticos/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Nitrosaminas/metabolismo , Oxirredução/efeitos dos fármacos , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/metabolismo , Schistosoma mansoni/enzimologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/fisiopatologia
8.
Vet Ophthalmol ; 9(5): 292-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16939456

RESUMO

PURPOSE: This review aims to provide a literature survey of the association between photo-oxidation of lens proteins and lipid peroxidation with the genesis of age-related cataract in laboratory studies using rodent models, in epidemiological and interventional studies in humans. MATERIALS AND METHODS: A Medline search using initial search terms lens, oxidation, antioxidant, and diet was employed to search for research papers covering the areas noted above from 1995 to 2005. Literature cited in those papers was also reviewed to provide as comprehensive a coverage of research work as possible. RESULTS: Lens protein photo-oxidation and lipid peroxidation are widely acknowledged as important steps in age-related cataractogenesis. Dietary antioxidants are central in retarding cataractogenesis, although most evidence for this is gained from laboratory-based work on relatively unphysiologic rodent cataract models, using antioxidant regimes that could not be sustained in clinical practice. Most research in humans is retrospective epidemiology although some interventional research has been undertaken, with mixed results. CONCLUSIONS: Dietary antioxidants are likely to be important in retarding cataractogenesis in older animals and in humans. Work on companion animals could provide a valuable stepping stone between rodent-based laboratory work and human interventional studies.


Assuntos
Catarata/patologia , Modelos Animais de Doenças , Cristalino/patologia , Envelhecimento , Animais , Antioxidantes/administração & dosagem , Catarata/dietoterapia , Catarata/etiologia , Suplementos Nutricionais , Humanos , Peroxidação de Lipídeos , Oxirredução , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA