Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 229: 113071, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915220

RESUMO

Diluted bitumen (dilbit) is an unconventional crude petroleum increasingly being extracted and transported to market by pipeline and tanker. Despite the transport of dilbit through terrestrial, aquatic, and coastal habitat important to diverse bird fauna, toxicity data are currently only available for fish and invertebrates. We used the zebra finch (Taeniopygia guttata) as a tractable, avian model system to investigate exposure effects of lightly weathered Cold Lake blend dilbit on survival, tissue residue, and a range of physiological and behavioural endpoints. Birds were exposed via oral gavage over 14-days with dosages of 0, 2, 4, 6, 8, 10, or 12 mL dilbit/kg bw/day. We identified an LD50 of 9.4 mL/kg/d dilbit, with complete mortality at 12 mL/kg/d. Mortality was associated with mass loss, external oiling, decreased pectoral and heart mass, and increased liver mass. Hepatic ethoxyresorufin-O-deethylase activity (EROD) was elevated in all dilbit-dosed birds compared with controls but there was limited evidence of sublethal effects of dilbit on physiological endpoints at doses < 10 mL/kg/d (hematocrit, hemoglobin, total antioxidants, and reactive oxygen metabolites). Dilbit exposure affected behavior, with more dilbit-treated birds foraging away from the feeder, more birds sleeping or idle at low dilbit doses, and fewer birds huddling together at high dilbit doses. Naphthalene, dibenzothiophene, and their alkylated congeners in particular (e.g. C2-napthalene and C2-dibenzothiophene) accumulated in the liver at greater concentrations in dilbit-treated birds compared to controls. Although directly comparable studies in the zebra finch are limited, our mortality data suggest that dilbit is more toxic than the well-studied MC252 conventional light crude oil with this exposure regime. A lack of overt sublethal effects at lower doses, but effects on body mass and composition, behaviour, high mortality, and elevated PAC residue at doses ≥ 10 mL/kg/d suggest a threshold effect.


Assuntos
Tentilhões , Petróleo , Poluentes Químicos da Água , Animais , Hidrocarbonetos
2.
Environ Toxicol Chem ; 41(1): 159-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918379

RESUMO

Breeding birds that become oiled may contaminate the shells of their eggs, and studies of conventional crude oil suggest that even small quantities can be absorbed through the eggshell and cause embryotoxicity. Unconventional crude oils remain untested, so we evaluated whether a major Canadian oil sands product, diluted bitumen (dilbit), would be absorbed and cause toxicity when applied to eggshells of two species, domestic chicken (Gallus gallus domesticus) and double-crested cormorant (Nannopterum auritum). We artificially incubated eggs and applied lightly weathered dilbit (Cold Lake blend) to the eggshells (0.015-0.15 mg g-1 egg in chicken; 0.1-0.4 mg g-1 egg in cormorant) at various points during incubation before sampling prehatch embryos. Polycyclic aromatic compound (PAC) residue in cormorant embryos was elevated only at the highest dilbit application (0.4 mg g-1 egg) closest (day 16) to sampling on day 22. In contrast, cormorant liver cytochrome P450 1a4 (Cyp1a4) mRNA expression (quantitative polymerase chain reaction assay) was elevated only in embryos treated with the earliest and lowest dilbit application (0.1 mg g-1 egg on day 4). These results confirm that dilbit can cross through the eggshell and be absorbed by embryos, and they imply rapid biotransformation of PACs and a nonmonotonic Cyp1a4 response. Despite evidence of exposure in cormorant, we found no detectable effects on the frequency of survival, deformity, and gross lesions, nor did we find effects on physiological endpoints indicative of growth and cardiovascular function in either chicken or cormorant. In ovo dilbit exposure may be less toxic than well-studied conventional crude oils. The effects of an oil spill scenario involving dilbit to bird embryos might be subtle, and PACs may be rapidly metabolized. Environ Toxicol Chem 2022;41:159-174. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Aves , Canadá , Casca de Ovo/química , Hidrocarbonetos/toxicidade , Campos de Petróleo e Gás , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade
3.
Ecotoxicology ; 30(4): 525-536, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33725237

RESUMO

Worldwide petroleum exploration and transportation continue to impact the health of the marine environment through both catastrophic and chronic spillage. Of the impacted fauna, marine reptiles are often overlooked. While marine reptiles are sensitive to xenobiotics, there is a paucity of petroleum toxicity data for these specialized fauna in peer reviewed literature. Here we review the known impacts of petroleum spillage to marine reptiles, specifically to marine turtles and iguanas with an emphasis on physiology and fitness related toxicological effects. Secondly, we recommend standardized toxicity testing on surrogate species to elucidate the mechanisms by which petroleum related mortalities occur in the field following catastrophic spillage and to better link physiological and fitness related endpoints. Finally, we propose that marine reptiles could serve as sentinel species for marine ecosystem monitoring in the case of petroleum spillage. Comprehensive petroleum toxicity data on marine reptiles is needed in order to serve as a foundation for future research with newer, unconventional crude oils of unknown toxicity such as diluted bitumen.


Assuntos
Poluição por Petróleo , Petróleo , Animais , Ecossistema , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Répteis , Testes de Toxicidade
4.
Sci Total Environ ; 755(Pt 1): 142834, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109373

RESUMO

Birds are vulnerable to petroleum pollution, and exposure has a range of negative effects resulting from plumage fouling, systemic toxicity, and embryotoxicity. Recent research has not been synthesized since Leighton's 1993 review despite the continued discharge of conventional petroleum, including high-volume oil spills and chronic oil pollution, as well as the emergence of understudied unconventional crude oil types. To address this, we reviewed the individual-level effects of crude oil and refined fuel exposure in avifauna with peer-reviewed articles published 1993-2020 to provide a critical synthesis of the state of the science. We also sought to answer how unconventional crude petroleum effects compare with conventional crude oil. Relevant knowledge gaps and research challenges were identified. The resulting review examines avian exposure to petroleum and synthesizes advances regarding the physical effects of oil hydrocarbons on feather structure and function, as well the toxic effects of inhaled or ingested oil, embryotoxicity, and how exposure affects broader scale endpoints related to behavior, reproduction, and survival. Another outcome of the review was the knowledge gaps and challenges identified. The first finding was a paucity of oil ingestion rate estimates in birds. Characterizing environmentally realistic exposure and ingestion rates is a higher research priority than additional conventional oral dosing experiments. Second, there is an absence of toxicity data for unconventional crude petroleum. Although the effects of air and water contamination in the Canadian oil sands region have received attention, toxicity data for direct exposure to unrefined bitumen produced there in high volumes and other such unconventional oil types are needed. Third, we encountered barriers to the interpretation, replication, broad relevance, and comparability of studies. We therefore propose best practices and promising technological advancements for researchers. This review consolidates our understanding of petroleum's effects on birds and points a way forward for researchers and resource managers.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Aves , Canadá , Campos de Petróleo e Gás , Petróleo/toxicidade
5.
BMC Genomics ; 20(1): 693, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477015

RESUMO

BACKGROUND: Seasonal timing of breeding is a life history trait with major fitness consequences but the genetic basis of the physiological mechanism underlying it, and how gene expression is affected by date and temperature, is not well known. In order to study this, we measured patterns of gene expression over different time points in three different tissues of the hypothalamic-pituitary-gonadal-liver axis, and investigated specifically how temperature affects this axis during breeding. We studied female great tits (Parus major) from lines artificially selected for early and late timing of breeding that were housed in two contrasting temperature environments in climate-controlled aviaries. We collected hypothalamus, liver and ovary samples at three different time points (before and after onset of egg-laying). For each tissue, we sequenced whole transcriptomes of 12 pools (n = 3 females) to analyse gene expression. RESULTS: Birds from the selection lines differed in expression especially for one gene with clear reproductive functions, zona pellucida glycoprotein 4 (ZP4), which has also been shown to be under selection in these lines. Genes were differentially expressed at different time points in all tissues and most of the differentially expressed genes between the two temperature treatments were found in the liver. We identified a set of hub genes from all the tissues which showed high association to hormonal functions, suggesting that they have a core function in timing of breeding. We also found ample differentially expressed genes with largely unknown functions in birds. CONCLUSIONS: We found differentially expressed genes associated with selection line and temperature treatment. Interestingly, the latter mainly in the liver suggesting that temperature effects on egg-laying date may happen down-stream in the physiological pathway. These findings, as well as our datasets, will further the knowledge of the mechanisms of tissue-specific avian seasonality in the future.


Assuntos
Regulação da Expressão Gênica , Reprodução/genética , Aves Canoras/genética , Animais , Cruzamento , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Fígado/metabolismo , Especificidade de Órgãos , Ovário/metabolismo , Reprodução/fisiologia , Aves Canoras/metabolismo , Temperatura , Fatores de Tempo , Transcriptoma
6.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371403

RESUMO

The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.


Assuntos
Expressão Gênica , Comportamento de Nidação , Reprodução , Aves Canoras/fisiologia , Animais , Variação Biológica Individual , Feminino , Hipotálamo/fisiologia , Fígado/fisiologia , Ovário/fisiologia , Estações do Ano , Aves Canoras/genética
7.
Oecologia ; 172(4): 1031-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23292453

RESUMO

Indirect predator effects on prey demography include any effect not attributable to direct killing and can be mediated by perceived predation risk. Though perceived predation risk clearly affects foraging, few studies have yet demonstrated that it can chronically alter food intake to an extent that affects demography. Recent studies have used stable isotopes to gauge such chronic effects. We previously reported an indirect predator effect on the size of subsequent clutches laid by song sparrows (Melospiza melodia). Females that experienced frequent experimental nest predation laid smaller clutches and were in poorer physiological condition compared to females not subject to nest predation. Every female was provided with unlimited supplemental food that had a distinctive (13)C signature. Here, we report that frequent nest predation females had lower blood δ(13)C values, suggesting that the experience of nest predation caused them to eat less supplemental food. Females that ate less food gained less fat and were in poorer physiological condition, consistent with the effect on food use contributing to the indirect predator effect on clutch size. Tissue δ(15)N values corroborated that clutch size was not likely constrained by endogenous resources. Finally, we report that the process of egg production evidently affects egg δ(13)C values, and this may mask the source of nutrients to eggs. Our results indicate that perceived predation risk may impose food limitation on prey even where food is unlimited and such predator-induced food limitation ought to be added to direct killing when considering the total effect of predators on prey numbers.


Assuntos
Tamanho da Ninhada , Ingestão de Alimentos , Comportamento Alimentar , Comportamento Predatório , Pardais/fisiologia , Animais , Isótopos de Carbono , Feminino , Isótopos de Nitrogênio
8.
J Exp Biol ; 210(Pt 6): 1064-74, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17337718

RESUMO

During avian egg production, oestrogen mediates marked increases in hepatic lipid production and changes in the diameter of assembled very-low density lipoprotein (VLDL). A nearly complete shift from generic VLDL ( approximately 70 nm in diameter), which transports lipids to peripheral tissues, to yolk-targeted VLDL (VLDLy) ( approximately 30 nm), which supplies the yolk with energy-rich lipid, has been observed in the plasma of laying domestic fowl. We validated an established dynamic laser scattering technique for a passerine songbird Taeniopygia guttata, the zebra finch, to characterize the dynamics of VLDL particle diameter distribution in relation to egg production. We predicted that non-gallinaceous avian species that have not been selected for maximum egg production would exhibit less dramatic shifts in lipid metabolism during egg production. As predicted, there was considerable overlap between the VLDL particle diameter distributions of laying and non-laying zebra finches. But unexpectedly, non-laying zebra finches had VLDL diameter distributions that peaked at small particles and had relatively few large VLDL particles. As a result, laying zebra finches, in comparison, had diameter distributions that were shifted towards larger VLDL particles. Nevertheless, laying zebra finches, like laying chickens, had larger proportions of particles within proposed VLDLy particle diameter ranges than non-laying zebra finches (e.g. sVLDLy: 50% vs 37%). Furthermore, zebra finches and chickens had similar modal (29.7 nm in both species) and median (32.7 nm vs 29.6 nm) VLDL particle diameters during egg production. Therefore, although zebra finches and chickens exhibited opposing directional shifts in VLDL particle diameter distribution during egg production, the modifications to VLDL particle structure in both species resulted in the realization of a common goal, i.e. to produce and maintain a large proportion of small VLDL particles of specific diameters that are capable of being incorporated into newly forming egg yolks.


Assuntos
Aves/fisiologia , Lipoproteínas VLDL/química , Oviposição/fisiologia , Óvulo/metabolismo , Tamanho da Partícula , Animais , Cruzamento , Galinhas , Suplementos Nutricionais , Comportamento Alimentar/fisiologia , Privação de Alimentos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA