Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 408, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957642

RESUMO

BACKGROUND: Limonium Sinense (Girard) Kuntze (L. sinense) has been widely used for the treatment of anaemia, bleeding, cancer, and other disorders in Chinese folk medicine. The aim of this study is to predict the therapeutic effects of L. sinense and investigate the potential mechanisms using integrated network pharmacology methods and in vitro cellular experiments. METHODS: The active ingredients of L. sinense were collected from published literature, and the potential targets related to L. sinense were obtained from public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment analyses were performed to explore the underlying mechanisms. Molecular docking, cellular experiments, RNA-sequencing (RNA-seq) and Gene Expression Omnibus (GEO) datasets were employed to further evaluate the findings. RESULTS: A total of 15 active ingredients of L. sinense and their corresponding 389 targets were obtained. KEGG enrichment analysis revealed that the biological effects of L. sinense were primarily associated with "Pathways in cancer". DisGeNET enrichment analysis highlighted the potential role of L. sinense in the treatment of breast cancer. Apigenin within L. sinense showed promising potential against cancer. Cellular experiments demonstrated that the L. sinense ethanol extract (LSE) exhibited a significant growth inhibitory effect on multiple breast cancer cell lines in both 2D and 3D cultures. RNA-seq analysis revealed a potential impact of LSE on breast cancer. Additionally, analysis of GEO datasets verified the significant enrichment of breast cancer and several cancer-related pathways upon treatment with Apigenin in human breast cancer cells. CONCLUSION: This study predicts the biological activities of L. sinense and demonstrates the inhibitory effect of LSE on breast cancer cells, highlighting the potential application of L. sinense in cancer treatment.


Assuntos
Neoplasias , Plumbaginaceae , Humanos , Apigenina , Simulação de Acoplamento Molecular , Farmacologia em Rede , Projetos de Pesquisa
2.
Front Plant Sci ; 13: 994036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388517

RESUMO

Limonium Sinense (Girard) Kuntze is a traditional Chinese medicinal herb, showing blood replenishment, anti-tumour, anti-hepatitis, and immunomodulation activities amongst others. However, the mechanism of its pharmacological activities remains largely unknown. Here, we investigated the effects of bioactive ingredients from Limonium Sinense using an integrated approach. Water extracts from Limonium Sinense (LSW) showed a strong growth inhibitory effect on multiple cells in both 2D and 3D cultures. Global transcriptomic profiling and further connectivity map (CMap) analysis identified several similarly acting therapeutic candidates, including Tubulin inhibitors and hypoxia-inducible factor (HIF) modulators. The effect of LSW on the cell cycle was verified with flow cytometry showing a G2/M phase arrest. Integrated analysis suggested a role for gallic acid in mediating HIF activation. Taken together, this study provides novel insights into the bioactive ingredients in Limonium Sinense, highlighting the rich natural resource and therapeutic values of herbal plants.

3.
J Am Chem Soc ; 127(18): 6610-6, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15869282

RESUMO

Exploiting naturally abundant (14)N and (31)P nuclei by high-resolution MAS NMR (magic angle spinning nuclear magnetic resonance) provides a molecular view of the electrostatic potential present at the surface of biological model membranes, the electrostatic charge distribution across the membrane interface, and changes that occur upon peptide association. The spectral resolution in (31)P and (14)N MAS NMR spectra is sufficient to probe directly the negatively charged phosphate and positively charged choline segment of the electrostatic P(-)-O-CH(2)-CH(2)-N(+)(CH(3))(3) headgroup dipole of zwitterionic DMPC (dimyristoylphosphatidylcholine) in mixed-lipid systems. The isotropic shifts report on the size of the potential existing at the phosphate and ammonium group within the lipid headgroup while the chemical shielding anisotropy ((31)P) and anisotropic quadrupolar interaction ((14)N) characterize changes in headgroup orientation in response to surface potential. The (31)P/(14)N isotropic chemical shifts for DMPC show opposing systematic changes in response to changing membrane potential, reflecting the size of the electrostatic potential at opposing ends of the P(-)-N(+) dipole. The orientational response of the DMPC lipid headgroup to electrostatic surface variations is visible in the anisotropic features of (14)N and (31)P NMR spectra. These features are analyzed in terms of a modified "molecular voltmeter" model, with changes in dynamic averaging reflecting the tilt of the C(beta)-N(+)(CH)(3) choline and PO(4)(-) segment. These properties have been exploited to characterize the changes in surface potential upon the binding of nociceptin to negatively charged membranes, a process assumed to proceed its agonistic binding to its opoid G-protein coupled receptor.


Assuntos
Dimiristoilfosfatidilcolina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos Opioides/química , Fosfatidilgliceróis/química , Anisotropia , Ligantes , Potenciais da Membrana , Membranas Artificiais , Isótopos de Nitrogênio , Peptídeos Opioides/metabolismo , Fósforo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Eletricidade Estática , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA