Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573669

RESUMO

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Assuntos
Estado Terminal , Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Austrália , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Programas Nacionais de Saúde , Estudos Prospectivos , Fatores de Tempo
2.
Hum Genet ; 115(6): 515-24, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15565467

RESUMO

Smith-Magenis syndrome (SMS) is a mental retardation/multiple congenital anomalies disorder associated with a heterozygous approximately 4-Mb deletion in 17p11.2. Patients with SMS show variability in clinical phenotype despite a common deletion found in >75-80% of patients. Recently, point mutations in the retinoic acid induced 1 (RAI1) gene, which lies within the SMS critical interval, were identified in three patients with many SMS features in whom no deletion was detected. It is not clear if the entire SMS phenotype can be accounted for by RAI1 haploinsufficiency, nor has the precise function of RAI1 been delineated. We report two novel RAI1 mutations, one frameshift and one nonsense allele, in nondeletion SMS patients. Comparisons of the clinical features in these two patients, three of the previously reported RAI1 point mutation cases, and the patients with a common deletion suggest that the majority of the clinical features in SMS result from RAI1 mutation, although phenotypic variability exists even among the individuals with RAI1 point mutations. Bioinformatics analyses of RAI1 and comparative genomics between human and mouse orthologues revealed a zinc finger-like plant homeo domain (PHD) at the carboxyl terminus that is conserved in the trithorax group of chromatin-based transcription regulators. These findings suggest RAI1 is involved in transcriptional control through a multi-protein complex whose function may be altered in individuals with SMS.


Assuntos
Deleção de Genes , Deficiência Intelectual/genética , Mutação , Proteínas/genética , Alelos , Sequência de Aminoácidos , Animais , Northern Blotting , Cromatina/química , Cromatina/metabolismo , Códon sem Sentido , Biologia Computacional , Sequência Conservada , Análise Mutacional de DNA , DNA Complementar/metabolismo , Bases de Dados como Assunto , Mutação da Fase de Leitura , Heterozigoto , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Mutação Puntual , Polimorfismo Genético , Estrutura Terciária de Proteína , Síndrome , Distribuição Tecidual , Transativadores , Fatores de Transcrição , Transcrição Gênica , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA