Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Poult Sci ; 102(12): 103096, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797492

RESUMO

Efforts to achieve sustainable phosphorus (P) inputs in broiler farming which meet the physiological demand of animals include nutritional intervention strategies that have the potential to modulate and utilize endogenous and microbiota-associated capacities. A temporal P conditioning strategy in broiler nutrition is promising as it induces endocrinal and transcriptional responses to maintain mineral homeostasis. In this context, the current study aims to evaluate the composition of the jejunal microbiota as a functional entity located at the main absorption site involved in nutrient metabolism. Starting from a medium or high P supply in the first weeks of life of broilers, a depletion strategy was applied at growth intervals from d 17 to 24 and d 25 to 37 to investigate the consequences on the composition of the jejunal microbiota. The results on fecal mineral P, calcium (Ca), and phytate contents showed that the diets applied to the depleted and non-depleted cohorts were effective. Microbial diversity in jejunum was represented by alpha diversity indices which appeared unaffected between dietary groups. However, chickens assigned to the dietary P depletion groups showed significantly higher abundances of Facklamia, Lachnospiraceae, and Ruminococcaceae compared to non-depleted control groups. Based on current knowledge of microbial function, these microorganisms make only a minor contribution to the birds' adaptive mechanism in the jejunum following P depletion. Microbial taxa such as Brevibacterium, Brachybacterium, and genera of the Staphylococcaceae family proliferated in a P-enriched environment and might be considered biomarkers for excessive P supply in commercial broiler chickens.


Assuntos
Microbiota , Fósforo , Animais , Fósforo/metabolismo , Jejuno/metabolismo , Galinhas/fisiologia , Minerais/metabolismo , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais/análise , Fenômenos Fisiológicos da Nutrição Animal
3.
Br J Nutr ; 130(8): 1298-1307, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36847163

RESUMO

Vitamin D3 (Vit D3) and 25(OH)D3 are used as dietary sources of active vitamin D (1,25(OH)2D3) in pig husbandry. Although acting primarily on intestine, kidney and bone, their use in pig nutrition has shown a wide range of effects also in peripheral tissues. However, there is an ambiguity in the existing literature about whether the effects of Vit D3 and 25(OH)D3 differ in attributing the molecular and phenotypic outcomes in pigs. We searched Web of Science and PubMed databases concerning the efficacy of Vit D3 in comparison with 25(OH)D3 on pig physiology, i.e. reproductive capacities, growth performance, immunity and bone development. Dietary intake of Vit D3 or 25(OH)D3 did not influence the reproductive capacity of sows. Unlike Vit D3, the maternal intake of 25(OH)D3 significantly improved the growth performance of piglets, which might be attributed to maternally induced micronutrient efficiency. Consequently, even in the absence of maternal vitamin D supplementation, 25(OH)D3-fed offspring also demonstrated better growth than the offspring received Vit D3. Moreover, a similar superior impact of 25(OH)D3 was seen with respect to serum markers of innate and humoral immunity. Last but not least, supplements containing 25(OH)D3 were found to be more effective than Vit D3 to improve bone mineralisation and formation, especially in pigs receiving basal diets low in Ca and phosphorus. The insights are of particular value in determining the principal dietary source of vitamin D to achieve its optimum utilisation efficiency, nutritional benefits and therapeutic potency and to further improve animal welfare across different management types.


Assuntos
Colecalciferol , Vitamina D , Animais , Suínos , Feminino , Colecalciferol/farmacologia , Dieta/veterinária , Vitaminas , Suplementos Nutricionais , Desenvolvimento Ósseo
4.
Poult Sci ; 102(2): 102351, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481711

RESUMO

Phosphorus (P) inclusion in broiler diets needs to meet the physiological demands at a specific developmental stage to ensure the performance, health, and welfare of the birds and minimize nutrient losses. Toward a more efficient utilization of P in broiler husbandry, a timed nutritional conditioning strategy might enhance the endogenous mechanisms of mineral homeostasis and thus reduce dietary P supply of mineral sources. In this study, following a variable P supply in the starter phase, the effects of a dietary P depletion of broiler chickens were investigated at different developmental stages. Physiological adaptation mechanisms were elucidated based on zootechnical performance, endocrine parameters, regulation of intestinal P transport, bone characteristics, and health aspects. The results revealed a marked response to P depletion at the earliest developmental phase, after which indications of effective compensatory mechanism were detectable with advancing ages. Potential mechanisms that enable broilers to maintain mineral homeostasis primarily include endocrine control mediated by calcitriol actions, as well as intestinal P uptake and mineral mobilization from the bone. Conclusively, the precise timing, duration, and extent of a P depletion strategy in the broiler chicken might be considered for optimized nutrient utilization.


Assuntos
Galinhas , Fósforo na Dieta , Animais , Galinhas/fisiologia , Fósforo na Dieta/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Minerais/metabolismo , Fósforo/metabolismo , Ração Animal/análise , Suplementos Nutricionais
5.
Animals (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35804568

RESUMO

This study assessed the use of locally sourced sustainable feed ingredients, rapeseed meal (RSM) and maize dried distiller grains with solubles (DDGS) in diets over traditional ingredients on the growth performance, bone strength and nutrient digestibility of broilers. This work also investigated the effects of supplementing exogenous phytase in two doses (500 vs. 1500 FTU/kg). Using male Ross 308 chicks (n = 320) assigned to receive one of four experimental diets: (1) Positive control diet 1 (PC1), a wheat, soya-based diet + 500 FTU/kg phytase. (2) Positive control diet 2, RSM/DDGS diet + 500 FTU/kg phytase (PC2). (3) Negative control (NC) reduced nutrient RSM/DDGS diet, no phytase. (4) The NC diet plus 1500 FTU/kg phytase (NC+). PC1 birds displayed higher feed intake and body weight gain consistently throughout the trial (p < 0.001) as well as increased body weight by 28 d and 42 d (p < 0.001). Whole-body dual emission X-ray absorptiometry (DXA) analysis revealed PC1 birds also had higher bone mineral density (BMD), bone mineral content (BMC), total bone mass, total lean mass and total fat mass than birds offered other treatments (p < 0.01). Diet had no significant effect on bone strength. Phytase superdosing improved the digestibility of dry matter (DM), neutral detergent fibre (NDF), gross energy (GE), calcium (Ca), potassium (K) and magnesium (Mg) compared to birds in other treatment groups. The phytase superdose also improved performance in comparison to birds offered the NC diet. Phytase superdosing increased the IP6 and IP5 degradation and increased the ileal inositol concentration of the birds. N excretion was lower for birds offered the traditional wheat−soya diet and highest for those offered the high-specification RSM/DDGS diet with a commercial dose of phytase. The addition of a phytase superdose to the negative control diet (NC+) reduced P excretion of birds by 15% compared to birds offered NC.

6.
Microorganisms ; 9(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205896

RESUMO

A sufficient supply of phosphorus (P) to pigs in livestock farming is based on the optimal use of plant-based phytate and mineral P supplements to ensure proper growth processes and bone stability. However, a high P supplementation might bear the risk of higher environmental burden due to the occurrence of excess P and phytate degradation products in manure. In this context, the intestinal microbiota is of central importance to increase P solubility, to employ non-mineral P by the enzymatic degradation of phytate, and to metabolize residual P. A feeding experiment was conducted in which piglets were fed diets with different P levels, resulting in three groups with low, medium (covering requirements), and high concentrations of available P. Samples from caecum and colon digesta were analysed for microbial composition and phytate breakdown to estimate the microbial contribution to metabolize P sources. In terms of identified operational taxonomic units (OTU), caecum and colon digesta under the three feeding schemes mainly overlap in their core microbiome. Nevertheless, different microbial families correlate with increased dietary P supply. Specifically, microbes of Desulfovibrionaceae, Pasteurellaceae, Anaerovoracaceae, and Methanobacteriaceae were found significantly differentially abundant in the large intestine across the dietary treatments. Moreover, members of the families Veillonellaceae, Selenomonadaceae, and Succinivibrionaceae might contribute to the observed phytate degradation in animals fed a low P diet. In this sense, the targeted manipulation of the intestinal microbiota by feeding measures offers possibilities for the optimization of intestinal phytate and P utilization.

7.
Sci Total Environ ; 796: 148988, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273829

RESUMO

In smallholder agriculture, the fast-growing and perennial accumulator plant comfrey (Symphytum spp.) was used to supply pigs with protein and minerals. Comfrey leaves show similar values in dry matter as soybean or blue lupine in crude protein content, but much higher levels of calcium and phosphorus. However, in terms of increased efficiency in animal husbandry, comfrey has been displaced by mainly soybean and cereals. Due to its profile of macro- and micronutrients the use of comfrey could have the potential to re-establish local resource cycles and help remediate over-fertilized soils. The aim of the study was to evaluate whether a modern pig breed accepts a continuous feed supplement of dried comfrey leaves. After an initial adaptation period post-weaning, German Landrace piglets were subjected to either a standard control diet or a diet supplemented with 15% dried comfrey leaves for 4 weeks. Body weight was reduced in comfrey-supplemented piglets compared to controls, which might be attributed to reduced palatability in the experimental setting. Nevertheless, comfrey-supplemented piglets exhibited adequate bone mineralization and intestinal integrity. The microbiome profile in feces and digesta revealed higher diversity in comfrey-supplemented piglets compared to controls, with pronounced effects on the abundances of Treponema and Prevotella. This may be due to described bio-positive components of the comfrey plant, as data suggest that the use of comfrey leaves may promote intestinal health. Digestive tract phosphorus levels were reduced in piglets receiving comfrey supplementation, which may ultimately affect phosphorus levels in manure. Results indicate that comfrey leaves could serve as a feed component in integrated agricultural systems to establish regional nutrient cycles. The trial provides a basis for further work on comfrey as a regionally grown protein source and effective replacement for rock mineral supplements.


Assuntos
Confrei , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Melhoramento Vegetal , Suínos
8.
Sci Rep ; 11(1): 13534, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188134

RESUMO

Phosphorus (P) and calcium (Ca) are critical for egg production in laying hens. Most of P in plant-based poultry diet is bound as phytic acid and needs to be hydrolysed before absorption. To increase P bioavailability, exogenous phytases or bioavailable rock phosphate is added in feed. There is growing evidence of the importance of miRNAs as the epicentre of intestinal homeostasis and functional properties. Therefore, we demonstrated the expression of miRNA profiles and the corresponding target genes due to the different levels of P (recommended vs. 20% reduction) and/or Ca (recommended vs. 15% reduction) in feed. Jejunal miRNA profiles of Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) laying hens strains were used (n = 80). A total of 34 and 76 miRNAs were differentially expressed (DE) in the different diet groups within LSL and LB strains respectively. In LSL, the DE miRNAs and their targets were involved in calcium signaling pathway, inositol phosphate metabolism, and mitochondrial dysfunction. Similarly, in LB miRNAs targets were enriched in metabolic pathways such as glutathione metabolism, phosphonate metabolism and vitamin B6 metabolism. Our results suggest that both strains employ different intrinsic strategies to cope with modulated P and Ca supply and maintain mineral homeostasis.


Assuntos
Ração Animal , Cálcio/farmacologia , Galinhas/metabolismo , Regulação da Expressão Gênica , Jejuno/metabolismo , MicroRNAs/biossíntese , Fósforo/farmacologia , RNA Mensageiro/biossíntese , Animais , Feminino
9.
BMC Genomics ; 22(1): 485, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187361

RESUMO

BACKGROUND: Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis were assessed (n = 80). RESULTS: Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics. CONCLUSIONS: The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements, which have so far been neglected in the supply recommendations. There is a demand for trial data showing the mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in laying hens.


Assuntos
Cálcio da Dieta , Galinhas , Animais , Feminino , Ração Animal/análise , Cálcio , Galinhas/genética , Dieta , Jejuno , Oviposição , Fósforo
10.
Open Biol ; 11(2): 200182, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593158

RESUMO

Improved utilization of phytates and mineral phosphorus (P) in monogastric animals contributes significantly to preserving the finite resource of mineral P and mitigating environmental pollution. In order to identify pathways and to prioritize candidate genes related to P utilization (PU), the genomic heritability of 77 and 80 trait-dependent expressed miRNAs and mRNAs in 482 Japanese quail were estimated and eQTL (expression quantitative trait loci) were detected. In total, 104 miR-eQTL (microRNA expression quantitative traits loci) were associated with SNP markers (false discovery rate less than 10%) including 41 eQTL of eight miRNAs. Similarly, 944 mRNA-eQTL were identified at the 5% False discovery rate threshold, with 573 being cis-eQTL of 36 mRNAs. High heritabilities of miRNA and mRNA expression coincide with highly significant eQTL. Integration of phenotypic data with transcriptome and microbiome data of the same animals revealed genetic regulated mRNA and miRNA transcripts (SMAD3, CAV1, ENNPP6, ATP2B4, miR-148a-3p, miR-146b-5p, miR-16-5p, miR-194, miR-215-5p, miR-199-3p, miR-1388a-3p) and microbes (Candidatus Arthromitus, Enterococcus) that are associated with PU. The results reveal novel insights into the role of mRNAs and miRNAs in host gut tissue functions, which are involved in PU and other related traits, in terms of the genetic regulation and inheritance of their expression and in association with microbiota components.


Assuntos
Microbioma Gastrointestinal , MicroRNAs/genética , Fósforo/metabolismo , RNA Mensageiro/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Coturnix , Redes Reguladoras de Genes , Genes Bacterianos , MicroRNAs/metabolismo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Transcriptoma
11.
J Anim Physiol Anim Nutr (Berl) ; 105 Suppl 2: 52-62, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32180287

RESUMO

Sufficient supply of pigs with calcium (Ca) and phosphorus (P) is essential for animal health and welfare during the growth period. However, the P content in animal manure is considered as a cause of massive environmental problems in soil and aquatic ecosystems. To complement previous findings, the objective of this study is the investigation of effects of a reduced and increased Ca and P supplementation on bone mineralization and bone structure compared with the current dietary recommendation. Another aim is to find possible serum markers that would allow the assessment of adequacy of P supply for bone health during growth. The result validated that the recommended Ca and P supply is sufficient, without the addition of microbial phytases. However, addition of P has no further beneficial effects on bone stability, while P supplementation below the recommended level affects bone development and growth performance. Reduced P levels have consequences for cancellous bone density and trabecular architecture. Further fine-tuning of the P supply in conjunction with an appropriate Ca supply will contribute to a reduction in P waste and associated environmental impact while maintaining animal health and welfare.


Assuntos
Fósforo na Dieta , Ração Animal/análise , Animais , Biomarcadores , Densidade Óssea , Cálcio , Cálcio da Dieta , Ecossistema , Fósforo , Suínos
12.
Poult Sci ; 99(12): 6797-6808, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248595

RESUMO

The objective of this study was to compare 2 laying hen strains in 5 production periods regarding phytase activity, phytate (InsP6) degradation, and myo-inositol (MI) release in the digestive tract and phosphorus (P) and calcium (Ca) utilization. One offspring of 10 nonrelated roosters per strain (Lohmann Brown-classic (LB) or Lohmann LSL-classic (LSL)) was placed in one of 20 metabolic units in a completely randomized block design in week 8, 14, 22, 28, and 58 of life. All hens were fed the same corn and soybean meal-based diet at one time, but the diet composition was adjusted to the requirements in the respective period. For 4 consecutive days, excreta were collected quantitatively at 24-hour intervals. In week 10, 16, 24, 30, and 60, the blood plasma, digesta of crop, gizzard, jejunum, ileum, and ceca, and mucosa of the jejunum was collected. The concentration of inorganic P in the blood plasma was higher in LB than in LSL hens (P = 0.026). Plasma Ca concentrations increased with each period (P < 0.001) in both strains. In jejunum digesta, the MI concentration did not differ between strains, but InsP6 concentration was higher in LB than in LSL hens (P = 0.002) and the highest in week 30 and 60. Total phosphatase and phytase activities were higher in LB than in LSL hens (P ≤ 0.009). Period effects were also significant for these enzymes. Concentrations of some constituents of the cecal content were different between the strains. The MI concentration in the egg albumen and yolk was higher in LB than in LSL hens. Differences in InsP6- and MI-related metabolism of the 2 hen strains existed. These differences were partly dependent of the period. Especially, week 24 was a period of remarkable change of metabolism. Great differences also existed among individuals, making it worth to have a closer look at the metabolism of individuals in addition to evaluating treatment means. Further studies on metabolic, genetic, and microbiome level may help explain these differences.


Assuntos
6-Fitase , Fenômenos Fisiológicos da Nutrição Animal , Cálcio , Inositol , Fósforo , Ácido Fítico , 6-Fitase/metabolismo , Ração Animal/análise , Animais , Cálcio/metabolismo , Galinhas/metabolismo , Dieta/veterinária , Feminino , Inositol/metabolismo , Masculino , Fósforo/metabolismo , Ácido Fítico/metabolismo , Distribuição Aleatória
13.
BMC Genomics ; 21(1): 626, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917128

RESUMO

BACKGROUND: The environmental impact of pig farming need to be reduced, with phosphorus (P) being of particular interest. Specified dietary regimens and management systems contribute to meet environmental concerns and reduce economic constrains. However, pregnant and lactating sows represent vulnerable individuals, whose reproductive potential and metabolic health status relies on adequate supply of macro- and micronutrients. The aim of this study was to investigate, whether sows fed with a dietary P content that is below or above current recommendations are capable to maintain mineral homeostasis during the reproduction cycle and which endogenous mechanisms are retrieved therefore in kidney and jejunum. Nulliparous gilts were fed iso-energetic diets with recommended (M), reduced (L), or high (H) amounts of mineral P supplements throughout gestation and lactation periods. Blood metabolites and hormones referring to the P homeostasis were retrieved prior to term (110 days of gestation) and at weaning (28 days of lactation). Transcriptional responses in kidney cortex and jejunal mucosa were analyzed using RNA sequencing. RESULTS: The variable dietary P content neither led to an aberration on fertility traits such as total weaned piglets nor to an effect on the weight pattern throughout gestation and lactation. Serum parameters revealed a maintained P homeostasis as reflected by unaltered inorganic P and calcium levels in L and H fed groups. The serum calcitriol levels were increased in lactating L sows. The endocrine responses to the dietary challenge were reflected at the transcriptional level. L diets led to an increase in CYP27B1 expression in the kidney compared to the H group and to an altered gene expression associated with lipid metabolism in the kidney and immune response in the jejunum. CONCLUSIONS: Our results suggest that current P requirements for gestating and lactating sows are sufficient and over supplementation of mineral P is not required. Shifts in renal and jejunal expression patterns between L and H groups indicate an affected intermediate metabolism, which long-term relevance needs to be further clarified.


Assuntos
Jejuno/metabolismo , Rim/metabolismo , Fósforo na Dieta/metabolismo , Prenhez/metabolismo , Suínos/metabolismo , Transcriptoma , Adaptação Fisiológica , Ração Animal/normas , Animais , Feminino , Lactação/metabolismo , Fósforo na Dieta/normas , Gravidez , Suínos/genética , Suínos/fisiologia
14.
Sci Total Environ ; 742: 140490, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634689

RESUMO

Local cultivars of comfrey (Symphytum spp.) have been used to cover protein and mineral requirements of farm animals in low-input systems. Due to its known health-promoting (e.g. allantoin), but also anti-nutritive ingredients (e.g. pyrrolizidine alkaloids), multidisciplinary approaches are essential in order to quantify the nutritional value and the potential of its use in poultry and farm animals in terms of meeting animal needs, using local resources as well as remediating over-fertilized soils. Focusing on animal effects, here one-day old sexed Cobb500 broiler chickens were subjected to either a standard control diet or a standard diet supplemented with 4% dried comfrey leaves for 32 days. Performance traits indicate good acceptance of supplementation with comfrey leaves. Parameters for liver function, mineral homeostasis, bone mineral density as well as intestinal microanatomy revealed no signs of impairment. Quantified pyrrolizidine alkaloids were below the detection limit in liver and breast muscle (<5 µg/kg tissue). Comfrey supplemented male broiler chickens showed higher ash content in breast muscle and revealed altered gene expression profiles for metabolic pathways in blood cells. In healthy broiler chickens, the transcriptome analyses revealed no aberrations in the immune-related pathways due to comfrey supplementation. The results imply that the use of comfrey leaves in a high-performance broiler line seems feasible and offers the potential for closed nutrient cycles in site-adapted local agricultural systems. Further analyses need to focus on possible growth-promoting and health-improving components of comfrey and the safe use of chicken products for human consumption.


Assuntos
Confrei , Alcaloides de Pirrolizidina , Animais , Galinhas , Humanos , Fígado , Masculino , Folhas de Planta
15.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316159

RESUMO

Phosphorus (P) is an essential component for all living beings. Low P diets prompt phenotypic and molecular adaptations to maintain P homeostasis and increase P utilization (PU). Knowledge of the molecular mechanisms of PU is needed to enable targeted approaches to improve PU efficiency and thus lower P excretion in animal husbandry. In a previous population study, Japanese quail were subjected to a low P diet lacking mineral P and exogenous phytase. Individual PU was determined based on total P intake and excretion. A subset of 20 extreme siblings discordant for PU was selected to retrieve gene expression patterns of ileum (n = 10 per PU group). Sequencing reads have been successfully mapped to the current Coturnix japonica reference genome with an average mapping rate of 86%. In total, 640 genes were found to be differentially abundant between the low and high PU groups (false discovery rate ≤ 0.05). Transcriptional patterns suggest a link between improved PU and mitochondrial energy metabolism, accelerated cell proliferation of enterocytes, and gut integrity. In assessing indicators of the efficient use of macro- and micronutrients, further research on turnover and proliferation rates of intestinal cells could provide an approach to improve P efficiency in poultry species.


Assuntos
Fósforo/metabolismo , Codorniz/genética , Transcriptoma , 6-Fitase/metabolismo , Animais , Mapeamento Cromossômico , Coturnix/genética , Dieta/veterinária , Metabolismo Energético , Ontologia Genética , Íleo/metabolismo , Japão , Mitocôndrias/metabolismo , Análise de Componente Principal , Codorniz/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo
16.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316683

RESUMO

Phosphorus is an essential mineral for all living organisms and a limited resource worldwide. Variation and heritability of phosphorus utilization (PU) traits were observed, indicating the general possibility of improvement. Molecular mechanisms of PU, including host and microbial effects, are still poorly understood. The most promising molecules that interact between the microbiome and host are microRNAs. Japanese quail representing extremes for PU were selected from an F2 population for miRNA profiling of the ileal tissue and subsequent association with mRNA and microbial data of the same animals. Sixty-nine differentially expressed miRNAs were found, including 21 novel and 48 known miRNAs. Combining miRNAs and mRNAs based on correlated expression and target prediction revealed enrichment of transcripts in functional pathways involved in phosphate or bone metabolism such as RAN, estrogen receptor and Wnt signaling, and immune pathways. Out of 55 genera of microbiota, seven were found to be differentially abundant between PU groups. The study reveals molecular interactions occurring in the gut of quail which represent extremes for PU including miRNA-16-5p, miR-142b-5p, miR-148a-3p, CTDSP1, SMAD3, IGSF10, Bacteroides, and Alistipes as key indicators due to their trait-dependent differential expression and occurrence as hub-members of the network of molecular drivers of PU.


Assuntos
Bactérias/classificação , Coturnix/genética , Perfilação da Expressão Gênica/veterinária , MicroRNAs/genética , Fósforo/metabolismo , Animais , Proteínas Aviárias/genética , Bactérias/genética , Bactérias/isolamento & purificação , Coturnix/microbiologia , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Masculino , Filogenia , RNA Mensageiro/genética , Análise de Sequência de RNA
17.
Sci Rep ; 9(1): 13038, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506580

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis is an important component of neuroendocrine stress regulation and coping behavior. Transcriptome profiles of the hypothalamus and adrenal gland were assessed to identify molecular pathways and candidate genes for coping behavior in pigs. Ten each of high- (HR) and low- (LR) reactive pigs (n = 20) were selected for expression profiling based haplotype information of a prominent QTL-region on SSC12 discovered in our previous genome-wide association study (GWAS) on coping behavior. Comparing the HR and LR pigs showed 692 differentially expressed genes (DEGs) in the adrenal gland and 853 DEGs in the hypothalamus, respectively. Interestingly, 47% (17 out of 36) of DEGs found in both tissues were located in GWAS regions identified on SSC12, indicating that there are significant functional positional candidate genes for coping behaviour. Pathway analysis assigned DEGs to glucocorticoid receptor signaling in the adrenal gland. Furthermore, oxidative phosphorylation, mitochondrial dysfunction, and NGF signaling as well as cholecystokinin/Gastrin-mediated were identified in the hypothalamus. We narrowed the list of candidate genes in GWAS regions by analyzing their DEGs in the HPA axis. The top identified transcripts, including ATP1B2, AURKB, MPDU1 and NDEL1 provide evidence for molecular correlates of coping behavior in GWAS regions.


Assuntos
Adaptação Psicológica , Perfilação da Expressão Gênica , Haplótipos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Transcriptoma , Glândulas Suprarrenais/metabolismo , Animais , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Fenótipo , Transdução de Sinais , Suínos
18.
Genes (Basel) ; 10(8)2019 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382709

RESUMO

In this study, we analyzed the effects of breed, diet energy source, and their interaction on adipose tissue transcriptome in growing Iberian and Duroc pigs. The study comprised 29 Iberian and 19 Duroc males, which were kept under identical management conditions except the nutritional treatment. Two isoenergetic diets were used with 6% high oleic sunflower oil (HO) or carbohydrates (CH) as energy sources. All animals were slaughtered after 47 days of treatment at an average live weight of 51.2 kg. Twelve animals from each breed (six fed each diet) were employed for ham subcutaneous adipose tissue RNA-Seq analysis. The data analysis was performed using two different bioinformatic pipelines. We detected 837 and 1456 differentially expressed genes (DEGs) according to breed, depending on the pipeline. Due to the strong effect of breed on transcriptome, the effect of the diet was separately evaluated in the two breeds. We identified 207 and 57 DEGs depending on diet in Iberian and Duroc pigs, respectively. A joint analysis of both effects allowed the detection of some breed-diet interactions on transcriptome, which were inferred from RNA-Seq and quantitative PCR data. The functional analysis showed the enrichment of functions related to growth and tissue development, inflammatory response, immune cell trafficking, and carbohydrate and lipid metabolism, and allowed the identification of potential regulators. The results indicate different effects of diet on adipose tissue gene expression between breeds, affecting relevant biological pathways.


Assuntos
Tecido Adiposo/metabolismo , Dieta/veterinária , Hibridização Genética , Suínos/genética , Transcriptoma , Animais , Carboidratos da Dieta/metabolismo , Nutrigenômica , Óleo de Girassol/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/metabolismo
19.
RNA Biol ; 16(12): 1764-1774, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31432767

RESUMO

With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica , Genoma , Pequeno RNA não Traduzido/genética , Estresse Fisiológico/genética , Glândulas Suprarrenais/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Operante , Medo/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/metabolismo , Hipotálamo/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Memória/fisiologia , Anotação de Sequência Molecular , Especificidade de Órgãos , Clivagem do RNA , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , Suínos
20.
J Dairy Sci ; 102(2): 1788-1802, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30594371

RESUMO

Milk fatty acids (MFA) are a proxy for the prediction of CH4 emission from cows, and prediction differs with diet. Our objectives were (1) to compare the effect of diets on the relation between MFA profile and measured CH4 production, (2) to predict CH4 production based on 6 data sets differing in the number and type of MFA, and (3) to test whether additional inclusion of energy-corrected milk (ECM) yield or dry matter intake (DMI) as explanatory variables improves predictions. Twenty dairy cows were used. Four diets were used based on corn silage (CS) or grass silage (GS) without (L0) or with linseed (LS) supplementation. Ten cows were fed CS-L0 and CS-LS and the other 10 cows were fed GS-L0 and GS-LS in random order. In feeding wk 5 of each diet, CH4 production (L/d) was measured in respiration chambers for 48 h and milk was analyzed for MFA concentrations by gas chromatography. Specific CH4 prediction equations were obtained for L0-, LS-, GS-, and CS-based diets and for all 4 diets collectively and validated by an internal cross-validation. Models were developed containing either 43 identified MFA or a reduced set of 7 groups of biochemically related MFA plus C16:0 and C18:0. The CS and LS diets reduced CH4 production compared with GS and L0 diets, respectively. Methane yield (L/kg of DMI) reduction by LS was higher with CS than GS diets. The concentrations of C18:1 trans and n-3 MFA differed among GS and CS diets. The LS diets resulted in a higher proportion of unsaturated MFA at the expense of saturated MFA. When using the data set of 43 individual MFA to predict CH4 production (L/d), the cross-validation coefficient of determination (R2CV) ranged from 0.47 to 0.92. When using groups of MFA variables, the R2CV ranged from 0.31 to 0.84. The fit parameters of the latter models were improved by inclusion of ECM or DMI, but not when added to the data set of 43 MFA for all diets pooled. Models based on GS diets always had a lower prediction potential (R2CV = 0.31 to 0.71) compared with data from CS diets (R2CV = 0.56 to 0.92). Models based on LS diets produced lower prediction with data sets with reduced MFA variables (R2CV = 0.62 to 0.68) compared with L0 diets (R2CV = 0.67 to 0.80). The MFA C18:1 cis-9 and C24:0 and the monounsaturated FA occurred most often in models. In conclusion, models with a reduced number of MFA variables and ECM or DMI are suitable for CH4 prediction, and CH4 prediction equations based on diets containing linseed resulted in lower prediction accuracy.


Assuntos
Ração Animal/análise , Bovinos/metabolismo , Ácidos Graxos/metabolismo , Metano/metabolismo , Leite/metabolismo , Animais , Dieta/veterinária , Ácidos Graxos/análise , Feminino , Linho/química , Linho/metabolismo , Lactação , Leite/química , Poaceae/metabolismo , Silagem/análise , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA