Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157572

RESUMO

To replace the obsolete ponding system, palm oil mill effluent (POME) steam reforming (SR) over net-acidic LaNiO3 and net-basic LaCoO3 were proposed as the POME primary treatments, with promising H2-rich syngas production. Herein, the long-term evaluation of POME SR was scrutinized with both catalysts under the optimal conditions (600 °C, 0.09 mL POME/min, 0.3 g catalyst, & 74-105 µm catalyst particle size) to examine the catalyst microstructure changes, transient process stability, and final effluent evaluation. Extensive characterization proved the (i) adsorption of POME vapour on catalysts before SR, (ii) deposition of carbon and minerals on spent SR catalysts, and (iii) dominance of coking deactivation over sintering deactivation at 600 °C. Despite its longer run, spent LaCoO3 (50.54 wt%) had similar carbon deposition with spent LaNiO3 (50.44 wt%), concurring with its excellent coke resistance. Spent LaCoO3 (6.12 wt%; large protruding crystals) suffered a harsher mineral deposition than spent LaNiO3 (3.71 wt%; thin film coating), confirming that lower reactivity increased residence time of reactants. Transient syngas evolution of both SR catalysts was relatively steady up to 4 h but perturbed by coking deactivation thereafter. La2O2CO3 acted as an intermediate species that hastened the coke removal via reverse Boudouard reaction upon its decarbonation. La2O2CO3 decarbonation occurred continuously in LaCoO3 system but intermittently in LaNiO3 system. LaNiO3 system only lasted for 13 h as its compact ash blocked the gas flow. LaCoO3 system lasted longer (17 h) with its porous ash, but it eventually failed because KCl crystallites blocked its active sites. Relatively, LaCoO3 system offered greater net H2 production (72.78%) and POME treatment volume (30.77%) than LaNiO3 system. SR could attain appreciable POME degradation (>97% COD, BOD5, TSS, & colour intensity). Withal, SR-treated POME should be polished to further reduce its incompliant COD and BOD5.


Assuntos
Compostos de Cálcio , Coque , Óleos de Plantas , Titânio , Óleo de Palmeira , Óleos de Plantas/química , Vapor , Lantânio , Óxidos , Carbono , Resíduos Industriais
2.
Bioresour Technol ; 156: 329-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24525218

RESUMO

Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325µm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles.


Assuntos
Biocombustíveis , Compostos de Cálcio/farmacologia , Metanol/farmacologia , Óxidos/farmacologia , Óleos de Plantas/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Carbono/metabolismo , Catálise/efeitos dos fármacos , Esterificação/efeitos dos fármacos , Nitrogênio/química , Óleo de Palmeira , Tamanho da Partícula , Porosidade , Reciclagem , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA