Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Reprod Dev ; 52(6): 731-40, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16963825

RESUMO

The main purpose of this study was to check whether phyto- and endogenous estrogens influence calcium ion mobilization [Ca(2+)](i) in bovine endometrial cells and whether this action is connected with biological effects i.e. prostaglandin (PG)F(2alpha) production. In our study we used two calcium measurement methods by comparing the microscopic method with widely used quantitative - spectrofluorometric method of [Ca(2+)](i) measurement. We also wanted to confirm whether visualization of calcium ion [Ca(2+)](i) in cells using microscopic method supported by micro image analysis (Micro Image Olympus system) reflects real, qualitative changes in the ion concentration. In both methods a cell-permeable form of fluorescent [Ca(2+)](i) indicator Fura-2 was used. Cultured bovine endometrial epithelial and stromal cells influenced by phorbol-2-myristate-13-acetate (PMA; positive control), estradiol 17-beta (E(2); endogenous estrogen) and active metabolites of phytoestrogens (environmental estrogens) were used as a model to study PGF(2alpha) secretion and [Ca(2+)](i) mobilization in the cells. Equol and para-ethyl-phenol in doses of 10(-8)-10(-6) M increased PGF(2alpha) concentration both in epithelial and stromal cells (P<0.05). In both methods, equol and para-ethyl-phenol did not cause intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P>0.05). Both methods revealed that only E(2) and PMA induced intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P<0.05). The results of both methods were highly correlated (P<0.001; r=0.82 for epithelial cells and r=0.89 for stromal cells). In conclusion, both methods gave approximately the same results and showed that phytoestrogens, in contrast to PMA and E(2), did not cause intracellular [Ca(2+)](i) mobilization in endometrial cells. The obtained results proved that the [Ca(2+)](i) visualization method supported by micro image analysis can produce similar results to the spectrofluorometric method.


Assuntos
Cálcio/metabolismo , Bovinos/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Estradiol/farmacologia , Fitoestrógenos/farmacologia , Animais , Dinoprosta/biossíntese , Dinoprosta/metabolismo , Endométrio/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Equol , Feminino , Corantes Fluorescentes/química , Fura-2/análogos & derivados , Fura-2/química , Isoflavonas/farmacologia , Microscopia de Fluorescência/veterinária , Fenóis/farmacologia , Espectrometria de Fluorescência/veterinária , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
2.
Reprod Biol ; 6 Suppl 1: 151-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16967096

RESUMO

Phytoestrogens are polyphenolic compounds that occur ubiquitously in food of plant origin and they have a variety of biological effects in numerous animal cell systems in vivo as well in vitro. Results of studies conducted on animals have shown that effects of phytoestrogens vary depending on species, sex, routes of administration, dose and exposure time. This review summarizes the results of ours studies concerning: 1/ molecular mechanism of phytoestrogen action in porcine granulosa cells, 2/ the involvement of phytoestrogens in immunological regulations of bovine corpus luteum function during luteolysis, 3/ genistein action on metabotropic hormones and lipid-carbohydrate metabolism in rats during pregnancy, 4/ the effects of phytoestrogens on reproductive processes in males of bilgoraj goose.


Assuntos
Aves/fisiologia , Mamíferos/fisiologia , Fitoestrógenos/farmacologia , Reprodução/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Corpo Lúteo/efeitos dos fármacos , Feminino , Genisteína/farmacologia , Células da Granulosa/efeitos dos fármacos , Hormônios , Metabolismo dos Lipídeos/efeitos dos fármacos , Luteólise/efeitos dos fármacos , Masculino , Gravidez
3.
Prostaglandins Other Lipid Mediat ; 79(3-4): 287-97, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16647642

RESUMO

Corpus luteum (CL) is a reproductive gland that plays a crucial endocrine role in the regulation of the estrous cycle, fertility, and pregnancy in cattle. The main function of CL is secretion of progesterone (P4), an important hormone for establishment a successful pregnancy, whereas prostaglandin F(2alpha) (PGF(2alpha)), 17beta-estradiol (E(2)) and testosterone (T) are implicated in the regulation of luteolysis. It has been shown that phytoestrogens may disrupt numerous reproductive functions on several levels of regulation and via different intracellular mechanisms. Using a cell-culture system of steroidogenic cells of the bovine CL, we determined effects of active phytoestrogen metabolites (equol and para-ethyl-phenol) on PGF(2alpha), P4, and T synthesis in steroidogenic CL cells. Moreover, we examined the intracellular mechanisms of phytoestrogen metabolite actions. Phytoestrogen metabolites did not affect P4 production in steroidogenic CL cells. However, PGF(2alpha) and T were significantly stimulated by metabolites of phytoestrogens in the bovine steroidogenic CL cells. To study the intracellular mechanism of endogenous E(2) and phytoestrogen metabolites action, steroidogenic cells were preincubated with a phospholipase C inhibitor (U73122), a protein kinase C inhibitor (staurosporine), an estrogen receptor antagonist (ICI) and a transcription inhibitor (actinomycin D) for 0.5h, and then stimulated with para-ethyl-phenol, equol or E(2). Only U73122 and staurosporine totally reduced the stimulatory effect of E(2) on PGF(2alpha) production by the cells. ICI and actinomycin D only partially reduced E(2) action on CL cells. In contrast, the stimulatory effect of phytoestrogen metabolites was totally inhibited by ICI and actinomycin D. Moreover, in contrast to E(2) action, phytoestrogen metabolites did not cause intracellular calcium mobilization in the cells. The present study demonstrated that phytoestrogen metabolites stimulate PGF(2alpha) secretion in steroidogenic cells of the bovine CL via the estrogen receptor-dependent, genomic pathway.


Assuntos
Bovinos/metabolismo , Corpo Lúteo/metabolismo , Dinoprosta/metabolismo , Isoflavonas/farmacologia , Fenóis/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Corpo Lúteo/citologia , Dactinomicina/metabolismo , Dactinomicina/farmacologia , Dieta , Equol , Estrenos/metabolismo , Estrenos/farmacologia , Feminino , Isoflavonas/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Fenóis/metabolismo , Fitoestrógenos/metabolismo , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , Glycine max/química , Estaurosporina/metabolismo , Estaurosporina/farmacologia , Linfócitos T/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
4.
J Reprod Dev ; 52(1): 33-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16276041

RESUMO

The aim of this study was to examine whether active metabolites of phytoestrogens (equol and para-ethyl-phenol) inhibit sensitivity of bovine corpus luteum (CL) to luteinizing hormone (LH) and to auto/paracrine luteotropic factors (prostaglandin E2-PGE2 and prostaglandin F(2alpha)-PGF(2alpha)), and whether they influence pulsatile progesterone (P4) secretion by the bovine CL. In in vivo experiments, high levels of equol and para-ethyl-phenol were found in plasma and in the CL tissue of heifers and cows fed a soy bean diet (2.5 kg/animal/day), along with lower concentrations of P4 (P < 0.05). Both Prostaglandins (PG) and LH strongly stimulated P4 secretion in cultured pieces of CL that were collected from cows fed a standard diet (P < 0.01). There was no effect of PGs and LH on P4 stimulation in CLs obtained from cows fed a diet rich in soy bean. Finally, we examined whether active metabolites of phytoestrogens participated in regulation of pulsatile P4 secretion and LH-stimulated P4 secretion in vitro using a microdialysis system. Equol and para-ethyl-phenol had no effect on basic and pulsatile P4 secretion in CLs during 240 min of perfusion when compared to the control (P < 0.05). However, they inhibited LH-stimulated P4 secretion (P < 0.05). Phytoestrogens and their metabolites may disrupt CL function by inhibiting PG- and LH-stimulated P4 secretion.


Assuntos
Corpo Lúteo/efeitos dos fármacos , Fitoestrógenos/farmacologia , Progesterona/metabolismo , Tecido Adiposo/metabolismo , Animais , Bovinos , Corpo Lúteo/metabolismo , Equol , Feminino , Técnicas In Vitro , Isoflavonas/sangue , Hormônio Luteinizante/fisiologia , Microdiálise , Músculos/metabolismo , Fenóis/sangue , Fitoestrógenos/administração & dosagem , Fitoestrógenos/metabolismo , Progesterona/sangue , Glycine max
5.
Exp Biol Med (Maywood) ; 230(5): 326-33, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15855299

RESUMO

Prostaglandins (PGs) are known to modulate the proper cyclicity of bovine reproductive organs. The main luteolytic agent in ruminants is PGF2alpha, whereas PGE2 has luteotropic actions. Estradiol 17beta (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2alpha and PGE2 synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2alpha synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2alpha than stromal cells, increasing the PGF2alpha to PGE2 ratio. The epithelial and stromal cells were preincubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a translation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2. Although the action of E2 on PGF2alpha synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2 action, phytoestrogens did not cause intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2alpha and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2alpha synthesis in epithelial cells of bovine endometrium, they may disrupt uterus function by altering the PGF2alpha to PGE2 ratio.


Assuntos
Endométrio/efeitos dos fármacos , Fitoestrógenos/farmacologia , Prostaglandinas/biossíntese , Animais , Bovinos , Dactinomicina/farmacologia , Endométrio/citologia , Endométrio/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estradiol/farmacologia , Estrenos/farmacologia , Feminino , Ocitocina/farmacologia , Pirrolidinonas/farmacologia , Glycine max , Estaurosporina/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
6.
Exp Biol Med (Maywood) ; 230(3): 189-99, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15734722

RESUMO

Phytoestrogens acting as endocrine disruptors may induce various pathologies in the female reproductive tract. The purpose of this study was to determine whether phytoestrogens present in the soybean and/or their metabolites are detectable in the plasma of cows fed a diet rich in soy and whether these phytoestrogens influence reproductive efficiency and prostaglandin (PG) synthesis during the estrous cycle and early pregnancy in the bovine endometrium. In in vivo Experiment 1, we found significant levels of daidzein and genistein in the fodder and their metabolites (equol and p-ethyl-phenol) in bovine serum and urine. The mean number of artificial inseminations (AIs) and pregnancy rates in two kinds of herds, control and experimental (cows fed with soybean 2.5 kg/day), were almost double in the soy-diet herd in comparison with the control animals. In in vivo Experiment 2, three out of five heifers fed soybean (2.5 kg/day) became pregnant whereas four out of five heifers in the control group became pregnant. The concentrations of a metabolite of PGF2alpha (PGFM) were significantly higher in the blood plasma of heifers fed a diet rich in soybean than those in the control heifers throughout the first 21 days after ovulation and AI. The higher levels of PGFM were positively correlated with equol and p-ethyl phenol concentrations in the blood. In in vitro experiments, the influence of isoflavones on PG secretion in different stages of the estrous cycle was studied. Although all phytoestrogens augmented the output of both PGs throughout the estrous cycle, equol and p-ethyl-phenol preferentially stimulated PGF2alpha output. The results obtained lead to the conclusion that soy-derived phytoestrogens and their metabolites disrupt reproductive efficiency and uterus function by modulating the ratio of PGF2alpha to PGE2, which leads to high, nonphysiological production of luteolytic PGF2alpha in cattle during the estrous cycle and early pregnancy.


Assuntos
Endométrio/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Glycine max/química , Fitoestrógenos/farmacologia , Prostaglandinas/metabolismo , Animais , Bovinos , Dieta , Endométrio/metabolismo , Ciclo Estral/metabolismo , Feminino , Genisteína/farmacologia , Isoflavonas/farmacologia , Gravidez , Progesterona/metabolismo , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA