Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 238: 118160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058331

RESUMO

Neural responses to the same stimulus show significant variability over trials, with this variability typically reduced (quenched) after a stimulus is presented. This trial-to-trial variability (TTV) has been much studied, however how this neural variability quenching is influenced by the ongoing dynamics of the prestimulus period is unknown. Utilizing a human intracranial stereo-electroencephalography (sEEG) data set, we investigate how prestimulus dynamics, as operationalized by standard deviation (SD), shapes poststimulus activity through trial-to-trial variability (TTV). We first observed greater poststimulus variability quenching in those real trials exhibiting high prestimulus variability as observed in all frequency bands. Next, we found that the relative effect of the stimulus was higher in the later (300-600ms) than the earlier (0-300ms) poststimulus period. Lastly, we replicate our findings in a separate EEG dataset and extend them by finding that trials with high prestimulus variability in the theta and alpha bands had faster reaction times. Together, our results demonstrate that stimulus-related activity, including its variability, is a blend of two factors: 1) the effects of the external stimulus itself, and 2) the effects of the ongoing dynamics spilling over from the prestimulus period - the state at stimulus onset - with the second dwarfing the influence of the first.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
2.
Med Hypotheses ; 138: 109596, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32059158

RESUMO

Art therapy plays important role in classical psychological assessment as it allows expressing the subject's sense of self. However, its effectiveness and validity could be impeded by lack of relationship to the patients' neuronal changes in their brain. The aim of our theoretical-empirical paper is to propose a novel brain-based quantitative objective measurement of the self and how it shapes the drawing process. We discuss recent data that how the autocorrelation window (ACW) is related to the temporal continuity of self in current neuroscience and further develop a method to use ACW to measure the temporal continuity of the drawing process, probing it in two case studies. As expected, the schizophrenic subject shows lower ACW values compared to the healthy subject and reflects the well-known deficit in the temporal continuity of the self in schizophrenia. We concluded that ACW and eventually other measures of the brain's spatiotemporal structure might be able to serve as objective markers of the self in the drawing process. As our approach connects brain, self, and drawing process, it provides the theoretical basis for the future development of a brain-based assessment of the self in the drawing process and art therapy.


Assuntos
Arteterapia , Neurociências , Esquizofrenia , Encéfalo , Humanos , Esquizofrenia/terapia
3.
Neural Plast ; 2017: 1473783, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261504

RESUMO

Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI) in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers (n = 30). Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1-35). Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers' motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.


Assuntos
Destreza Motora/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Natação/fisiologia , Tálamo/fisiologia , Adolescente , Adulto , Atletas , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
4.
Hum Brain Mapp ; 36(8): 3204-12, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26059006

RESUMO

Recent functional magnetic resonance spectroscopy (fMRS) studies have shown changes in glutamate/glutamine (Glx) concentrations between resting-state and active-task conditions. However, the types of task used have been limited to sensory paradigms, and the regions from which Glx concentrations have been measured limited to sensory ones. This leaves open the question as to whether the same effect can be seen in higher-order brain regions during cognitive tasks. Cortical midline structures, especially the medial prefrontal cortex (MPFC), have been suggested to be involved in various such cognitive tasks. We, therefore set out to use fMRS to investigate the dynamics of Glx concentrations in the MPFC between resting-state and mental imagery task conditions. The auditory cortex was used as a control region. In addition, functional magnetic resonance imaging was used to explore task-related neural activity changes. The mental imagery task consisted of imagining swimming and was applied to a large sample of healthy participants (n = 46). The participants were all competitive swimmers, ensuring proficiency in mental-swimming. Glx concentrations in the MPFC increased during the imagery task, as compared to resting-state periods preceding and following the task. These increases mirror BOLD activity changes in the same region during the task. No changes in either Glx concentrations or BOLD activity were seen in the auditory cortex. These findings contribute to our understanding of the biochemical basis of generating or manipulating mental representations and the MPFC's role in this.


Assuntos
Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Imaginação/fisiologia , Córtex Pré-Frontal/fisiologia , Natação/fisiologia , Adolescente , Adulto , Atletas , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA