Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1163915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609486

RESUMO

Introduction: The utilization of sprouted meals in beer production and enhancing the physicochemical properties of supplementary foods is widespread in Africa. This work aimed to determine the influence of soaking, germination, maturation and variety conditions on the physicochemical properties, proteolytic activity, free amino nitrogen (FAN) and soluble protein contents of Coca-sr and Atp-Y maize varieties. Methods: To achieve this, the central composite design (CCD) was used for the optimization of five parameters, namely soaking time (18-42 h), plant salt concentration (0.5-1.2%), soaking temperature (25-41°C), sprouting time (80-195 h) and ripening time (17.50-42 h), and following dependent variables were investigated: proteolytic activity, FAN content and soluble protein. Optimal samples flours obtained were then subsequently subjected to physicochemical and functional analysis. Results: The analysis of results showed that the linear, interactive and quadratic effects of the factors significantly (p<0.05) affected the proteolytic activity, FAN and soluble protein contents of both varieties. The direction of each factor's variation and its effects were not similar in the two varieties. The optimal malting conditions were 7.31 h soaking with 1.678% vegetable salt at a temperature of 34.65°C followed by sprouting for 245.59 h and maturation for 0.765 h for the Atp-Y variety. For the Coca-sr variety, it requires 1.608 h of soaking with 1.678% vegetable salt at a temperature of 51.93°C followed by 273.94 h and 58.73 h for sprouting and ripening time respectively. The meals of Coca-sr produces using these optimal conditions showed a significantly (p<0.05) higher proteolytic activity, FAN and soluble protein content. The amylolytic activity was more pronounced in the Atp-Y variety, as was the content of essential amino acids. The above optimal conditions reduced the content of anti-nutrients (phytates, saponins, oxalates, condensed and hydrolysable tannins), improved the availability of minerals (Ca and Mg), reduced the pH, mass density, water retention capacity and swelling rate. Conclusion: As a result, the optimal flours of these two maize varieties could be applied in the formulation of supplementary foods, bakery products and beer by industrialists.

2.
Environ Sci Pollut Res Int ; 25(11): 10493-10503, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28965298

RESUMO

Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) and Clausena anisata (Willd.) Hook. f. ex Benth. (Rutaceae) are two aromatic species traditionally used in Cameroon to repel and kill insects. The present work was carried out to substantiate this traditional use and to evaluate the possible incorporation in commercial botanical insecticides of their essential oils (EOs). The EOs were distilled from leaves of C. anisata and aerial parts of D. ambrosioides and analyzed by gas chromatography-mass spectrometry (GC-MS). The insecticidal activity of both EOs was investigated against the filariasis vector, Culex quinquefasciatus, and the housefly, Musca domestica. As possible mode of action, the inhibition of acetylcholinesterase (AChE) by the two EOs was investigated as well. The D. ambrosioides EO was characterized by the monoterpene peroxide ascaridole (61.4%) and the aromatic p-cymene (29.0%), whereas the C. anisata EO was dominated by the phenylpropanoids (E)-anethole (64.6%) and (E)-methyl isoeugenol (16.1%). The C. anisata EO proved to be very toxic to third instar larvae of C. quinquefasciatus showing LC50 of 29.3 µl/l, whereas D. ambrosioides EO was more toxic to adults of M. domestica showing a LD50 of 51.7 µg/adult. The mixture of both EOs showed a significant synergistic effect against mosquito larvae with LC50 estimated as 19.3 µl/l, whereas this phenomenon was not observed upon application to M. domestica adults (LD50 = 75.9 µg/adult). Of the two EOs, the D. ambrosioides one provided a good inhibition of AChE (IC50 = 77 µg/ml), whereas C. anisata oil was not effective. These findings provide new evidences supporting the ethno-botanical use of these two Cameroonian plants, and their possible application even in synergistic binary blends, to develop new eco-friendly, safe and effective herbal insecticides.


Assuntos
Clausena/química , Culex/efeitos dos fármacos , Moscas Domésticas/efeitos dos fármacos , Inseticidas/análise , Larva/efeitos dos fármacos , Monoterpenos/química , Óleos Voláteis/química , Peróxidos/química , Folhas de Planta/química , Animais , Camarões , Monoterpenos Cicloexânicos , Cromatografia Gasosa-Espectrometria de Massas , Mosquitos Vetores
3.
Artigo em Inglês | MEDLINE | ID: mdl-28684709

RESUMO

Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.


Assuntos
Magnoliopsida , Óleos Voláteis/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Células 3T3 BALB , Camarões , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Monoterpenos/análise , Óleos Voláteis/química , Plantas Medicinais , Sesquiterpenos/análise , Trypanosoma brucei brucei/crescimento & desenvolvimento
4.
Parasitol Res ; 115(12): 4617-4626, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27679452

RESUMO

In Cameroon, many dietary spices are used by traditional healers to cure several diseases such as cancer and microbial infections. Aframomum daniellii, Dichrostachys cinerea and Echinops giganteus are Cameroonian spices widely used as flavourings and as food additives. Moreover, they are traditionally herbal remedies employed to treat several diseases, as well as to control populations of insect pests. In this research, we analysed the chemical composition of A. daniellii, D. cinerea and E. giganteus essential oils and we evaluated their larvicidal potential against larvae of the filariasis and West Nile virus vector Culex quinquefasciatus. The essential oils were obtained from different plant parts by hydrodistillation and their composition was analysed by GC-MS. The three spices exhibited different volatile chemical profiles, being characterized by 1,8-cineole, sabinene and ß-pinene (A. daniellii), geraniol and terpinen-4-ol (D. cinerea), and silphiperfol-6-ene and presilphiperfolan-8-ol (E. giganteus). Results showed that the highest larvicidal toxicity on Cx. quinquefasciatus was exerted by D. cinerea essential oil (LC50 = 39.1 µL L-1), followed by A. daniellii (pericarp essential oil: LC50 = 65.5 µL L-1; leaves: LC50 = 65.5µL L-1; seeds: LC50 = 106.5µL L-1) and E. giganteus (LC50 = 227.4 µL L-1). Overall, the chance to use the D. cinerea essential oil against Cx. quinquefasciatus young instars seems promising, since it is effective at moderate doses and could be an advantageous alternative to build newer mosquito control tools.


Assuntos
Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Especiarias/análise , Animais , Anopheles/crescimento & desenvolvimento , Camarões , Culex/crescimento & desenvolvimento , Filariose/transmissão , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/química , Larva/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Óleos Voláteis/química , Folhas de Planta/química
5.
J Food Prot ; 75(3): 547-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22410230

RESUMO

Experiments were conducted in the laboratory to evaluate the bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides (Rutaceae) against Acanthoscelides obtectus (Coleoptera: Bruchidae). The chemical composition of the essential oil and the fatty acid composition of the vegetable oil extracted from the seeds of Z. xanthoxyloides were determined. The insecticidal activities of these oils and the associated aromatized clay powder were evaluated against A. obtectus. Both oils were strongly repellent (100% repellency at 0.501 µl/cm² essential oil and 3.144 µl/cm² vegetable oil) and highly toxic (LC50 = 0.118 µl/cm² for essential oil) to this beetle after contact on filter paper. The vapors of the essential oil were highly toxic to adult insects (LC50 = 0.044 µl/cm³), and the aromatized powder made from clay and essential oil was more toxic (LD50 = 0.137 µl/g) than the essential oil alone (LD50 = 0.193 µl/g) after 2 days of exposure on a common bean. Both oils greatly reduced the F1 insect production and bean weight loss and did not adversely affect the bean seed viability. In general, the results obtained indicate that these plant oils can be used for control of A. obtectus in stored beans.


Assuntos
Besouros/efeitos dos fármacos , Fabaceae/parasitologia , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Zanthoxylum/química , Animais , Parasitologia de Alimentos , Conservação de Alimentos/métodos , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA