Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38090841

RESUMO

Convolutional neural networks (CNNs) have been successfully applied to motor imagery (MI)-based brain-computer interface (BCI). Nevertheless, single-scale CNN fail to extract abundant information over a wide spectrum from EEG signals, while typical multi-scale CNNs cannot effectively fuse information from different scales with concatenation-based methods. To overcome these challenges, we propose a new scheme equipped with attention-based dual-scale fusion convolutional neural network (ADFCNN), which jointly extracts and fuses EEG spectral and spatial information at different scales. This scheme also provides novel insight through self-attention for effective information fusion from different scales. Specifically, temporal convolutions with two different kernel sizes identify EEG µ and ß rhythms, while spatial convolutions at two different scales generate global and detailed spatial information, respectively, and the self-attention mechanism performs feature fusion based on the internal similarity of the concatenated features extracted by the dual-scale CNN. The proposed scheme achieves the superior performance compared with state-of-the-art methods in subject-specific motor imagery recognition on BCI Competition IV dataset 2a, 2b and OpenBMI dataset, with the cross-session average classification accuracies of 79.39% and significant improvements of 9.14% on BCI-IV2a, 87.81% and 7.66% on BCI-IV2b, 65.26% and 7.2% on OpenBMI dataset, and the within-session average classification accuracies of 86.87% and significant improvements of 10.89% on BCI-IV2a, 87.26% and 8.07% on BCI-IV2b, 84.29% and 5.17% on OpenBMI dataset, respectively. What is more, ablation experiments are conducted to investigate the mechanism and demonstrate the effectiveness of the dual-scale joint temporal-spatial CNN and self-attention modules. Visualization is also used to reveal the learning process and feature distribution of the model.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Humanos , Imaginação , Eletroencefalografia/métodos , Redes Neurais de Computação
2.
J Mater Chem B ; 8(7): 1472-1480, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995094

RESUMO

Herein hybrid silica nanoparticles have been engineered to direct the sequential delivery of multiple chemotherapeutic drugs in response to external stimuli such as variations in pH. The nanocarriers consist of conventional MCM-41-type nanoparticles, which have been functionalised with an organic ligand (or stalk) grafted onto the external surface. The stalk is designed to "recognise" a complementary molecule, which serves as a "cap" to block the pores of the nanoparticles. First, camptothecin is introduced into the pores by diffusion prior to capping the pore apertures via molecular recognition. The cap, which is a derivative of 5-fluorouracil, serves as a second cytotoxic drug for synergistic chemotherapy. In vitro tests revealed that negligible release of the drugs occurred at pH 7.4, thus avoiding toxic side effects in the blood stream. In contrast, the stalk/cap complex is destabilised within the endolysosomal compartment (pH 5.5) of cancer cells, where release of the drugs was demonstrated. Furthermore, this environmentally responsive system exhibited a synergistic effect of the two drugs, where the pH-triggered release of the cytotoxic cap followed by diffusion-controlled release of the drug cargo within the pores led to essentially complete elimination of breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/química , Humanos , Células MCF-7 , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
3.
J Neural Eng ; 13(3): 036019, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27152666

RESUMO

OBJECTIVE: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user's SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. APPROACH: An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with 'low' performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. MAIN RESULTS: The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. SIGNIFICANCE: These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects' performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.


Assuntos
Ritmo alfa/fisiologia , Interfaces Cérebro-Computador , Potenciais Evocados Visuais/fisiologia , Neurorretroalimentação/fisiologia , Adulto , Algoritmos , Eletroencefalografia , Feminino , Humanos , Masculino , Neurorretroalimentação/classificação , Estimulação Luminosa , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
4.
Chemistry ; 20(30): 9372-80, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24986399

RESUMO

Mesoporous silica nanoparticles (MSNPs) are functionalized with molecular-recognition sites by anchoring a triazine or uracil fragment on the surface. After loading these MSNPs with dyes (propidium iodide or rhodamine B) or with a drug (camptothecin, CPT) they are capped by the complementary fragments, uracil and adenine, respectively, linked to the bulky cyclodextrin ring. These MSNPs are pH-sensitive and indeed, the dye release was observed at acidic pH by continuously monitored fluorescence spectroscopy studies. On the other hand, no dye leakage occurred at neutral pH, hence meeting the non-premature requirement to minimize side effects. In vitro studies were performed and confocal microscopy images demonstrate the internalization of the MSNPs and also dye release in the cells. To investigate the drug-delivery performance, the cytotoxicity of CPT-loaded nanoparticles was tested and cell death was observed. A remarkably lower amount of loaded CPT in the MSNPs (more than 40 times less) proved to be as efficient as free CPT. These results not only demonstrate the drug release after pore opening under lysosomal pH, but they also show the potential use of these MSNPs to significantly decrease the amount of the administered drug.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Microscopia Confocal/métodos , Nanopartículas/administração & dosagem , Dióxido de Silício/administração & dosagem , Triazinas/química , Uracila/química
5.
Chemistry ; 20(33): 10371-82, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25044077

RESUMO

New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol-gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper-catalysed azide-alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol-gel process; 2) the precursor is first subjected to the sol-gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne- or azide-containing precursors, and thereafter, functionalised with complementary model azide- or alkyne-containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.

6.
Chemistry ; 15(25): 6279-88, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19440996

RESUMO

Two monotrialkoxysilylated compounds that consist of complementary fragments of melamine (M) and cyanuric acid (CA) have been synthesised. The molecular recognition properties of the M and CA fragments through complementary hydrogen bonds (DAD and ADA; D=donor, A=acceptor) are the key factor used to direct the formation of hybrid silica materials by using a sol-gel process. These materials were synthesised following two methods: First, an organo-bridged silsesquioxane was obtained by the hydrolysis of the two complementary monotrialkoxysilylated melamine and cyanuric acid derivatives, with fluoride ions as a catalyst. The hydrogen-bonding interactions between the two organic fragments are responsible for the formation of the bridging unit. The transcription of the assembly into the hybrid material was characterised and evidenced by solid-state NMR (29Si, 13C) and FTIR spectroscopic experiments. Second, the molecular recognition was exploited to synthesise an imprinted hybrid silica. This material was prepared by co-condensation of tetraethyl orthosilicate (TEOS) with the monosilylated cyanuric acid derivative (CA) templated by nonsilylated melamine. The melamine template was completely removed by treating the solid material with hydrochloric acid. The reintroduction of the template was performed by treating the resulting material with an aqueous suspension of melamine. These steps were monitored and analysed by several techniques, such as solid-state NMR (29Si, 13C) and FTIR spectroscopic analysis and nitrogen adsorption-desorption isotherms.


Assuntos
Impressão Molecular/métodos , Silanos/química , Triazinas/química , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA