Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555773

RESUMO

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Assuntos
Hipnóticos e Sedativos , Metabolômica , Polyporales , Espectrometria de Massas em Tandem , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/química , Camundongos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polyporales/química , Masculino , Agaricales/química , Sono/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Reishi/química
2.
BMC Complement Med Ther ; 22(1): 73, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296317

RESUMO

BACKGROUND: Fibroblast-like synoviocytes (FLS) have cancer cell-like characteristics, such as abnormal proliferation and resistance to apoptosis, and play a pathogenic role in rheumatoid arthritis (RA). Hyperproliferation of RA-FLS that can be triggered by the activation of interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling destructs cartilage and bone in RA patients. Chrysoeriol is a flavone found in medicinal herbs such as Chrysanthemi Indici Flos (the dried capitulum of Chrysanthemum indicum L.). These herbs are commonly used in treating RA. Chrysoeriol has been shown to exert anti-inflammatory effects and inhibit STAT3 signaling in our previous studies. This study aimed to determine whether chrysoeriol inhibits hyperproliferation of RA-FLS, and whether inhibiting STAT3 signaling is one of the underlying mechanisms. METHODS: IL-6/soluble IL-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS were used to evaluate the effects of chrysoeriol. CCK-8 assay and crystal violet staining were used to examine cell proliferation. Annexin V-FITC/PI double staining was used to detect cell apoptosis. Western blotting was employed to determine protein levels. RESULTS: Chrysoeriol suppressed hyperproliferation of, and evoked apoptosis in, IL-6/sIL-6R-stimulated RA-FLS. The apoptotic effect of chrysoeriol was verified by its ability to cleave caspase-3 and caspase-9. Mechanistic studies revealed that chrysoeriol inhibited activation/phosphorylation of Janus kinase 2 (JAK2, Tyr1007/1008) and STAT3 (Tyr705); decreased STAT3 nuclear level and down-regulated protein levels of Bcl-2 and Mcl-1 that are transcriptionally regulated by STAT3. Over-activation of STAT3 significantly diminished anti-proliferative effects of chrysoeriol in IL-6/sIL-6R-stimulated RA-FLS. CONCLUSIONS: We for the first time demonstrated that chrysoeriol suppresses hyperproliferation of RA-FLS, and suppression of JAK2/STAT3 signaling contributes to the underlying mechanisms. This study provides pharmacological and chemical justifications for the traditional use of chrysoeriol-containing herbs in treating RA, and provides a pharmacological basis for developing chrysoeriol into a novel anti-RA agent.


Assuntos
Artrite Reumatoide , Flavonas , Sinoviócitos , Artrite Reumatoide/tratamento farmacológico , Fibroblastos , Flavonas/farmacologia , Humanos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA