Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Endocrinology ; 157(10): 4032-4040, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27399878

RESUMO

1α,25-dihydroxy-vitamin D3 (1,25D) exerts protective effects in the vascular system and promotes myeloid cell differentiation, which are important sources of reactive oxygen species. Given that myeloid cell reactive oxygen species derives from Nox-family NADPH oxidases, we hypothesized that this enzyme family contributes to the beneficial effects of 1,25D on vascular regeneration. The function of Nox enzymes in this context was studied in the murine carotid artery electric injury regeneration model. Male mice were treated with daily injections of 1,25D (100 ng/kg · d) for 5 days and carotid injury was induced after 3 days. After injury, 1,25D increased the expression of Nox2 in the carotid artery. As determined by Evans blue staining on day 6, 1,25D improved vascular regeneration in a Nox2-dependent manner. Healing was lost in mice knockout for Nox2, but not in Nox1 or Nox4, knockout mice. Tissue specific knockouts demonstrated that the myeloid, but not the endothelial Nox2, was required for this effect. Mechanistically, the combination of injury and 1,25D induced the mobilization of angiogenic myeloid cells (AMCs) and increased the vascular expression of the cytokine stem cell derived factor (SDF)1, which attracts AMCs to the site of injury. Vitamin D in a Nox2-dependent manner activated MAPKs, and these are known to contribute to SDF1 induction. Accordingly, SDF1 induction was lost after deletion of Nox2. By inducing SDF1 and enhancing the number of AMCs, VitD3 is a novel approach to promote vascular repair.


Assuntos
Calcitriol/uso terapêutico , Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Regeneração/efeitos dos fármacos , Animais , Calcitriol/farmacologia , Lesões das Artérias Carótidas/enzimologia , Quimiocina CXCL12/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , Espécies Reativas de Oxigênio/metabolismo , Remodelação Vascular
2.
Circulation ; 130(12): 976-86, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25015343

RESUMO

BACKGROUND: Vitamin D deficiency in humans is frequent and has been associated with inflammation. The role of the active hormone 1,25-dihydroxycholecalciferol (1,25-dihydroxy-vitamin D3; 1,25-VitD3) in the cardiovascular system is controversial. High doses induce vascular calcification; vitamin D3 deficiency, however, has been linked to cardiovascular disease because the hormone has anti-inflammatory properties. We therefore hypothesized that 1,25-VitD3 promotes regeneration after vascular injury. METHODS AND RESULTS: In healthy volunteers, supplementation of vitamin D3 (4000 IU cholecalciferol per day) increased the number of circulating CD45-CD117+Sca1+Flk1+ angiogenic myeloid cells, which are thought to promote vascular regeneration. Similarly, in mice, 1,25-VitD3 (100 ng/kg per day) increased the number of angiogenic myeloid cells and promoted reendothelialization in the carotid artery injury model. In streptozotocin-induced diabetic mice, 1,25-VitD3 also promoted reendothelialization and restored the impaired angiogenesis in the femoral artery ligation model. Angiogenic myeloid cells home through the stromal cell-derived factor 1 (SDF1) receptor CXCR4. Inhibition of CXCR4 blocked 1,25-VitD3-stimulated healing, pointing to a role of SDF1. The combination of injury and 1,25-VitD3 increased SDF1 in vessels. Conditioned medium from injured, 1,25-VitD3-treated arteries elicited a chemotactic effect on angiogenic myeloid cells, which was blocked by SDF1-neutralizing antibodies. Conditional knockout of the vitamin D receptor in myeloid cells but not the endothelium or smooth muscle cells blocked the effects of 1,25-VitD3 on healing and prevented SDF1 formation. Mechanistically, 1,25-VitD3 increased hypoxia-inducible factor 1-α through binding to its promoter. Increased hypoxia-inducible factor signaling subsequently promoted SDF1 expression, as revealed by reporter assays and knockout and inhibitory strategies of hypoxia-inducible factor 1-α. CONCLUSIONS: By inducing SDF1, vitamin D3 is a novel approach to promote vascular repair.


Assuntos
Calcitriol/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Adulto , Animais , Quimiocina CXCL12/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Células Mieloides/efeitos dos fármacos , Receptores CXCR4/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA