Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(4): 782-792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491324

RESUMO

The interplay between excitation and inhibition determines the fidelity of cortical representations. The receptive fields of excitatory neurons are often finely tuned to encoded features, but the principles governing the tuning of inhibitory neurons remain elusive. In this study, we recorded populations of neurons in the mouse postsubiculum (PoSub), where the majority of excitatory neurons are head-direction (HD) cells. We show that the tuning of fast-spiking (FS) cells, the largest class of cortical inhibitory neurons, was broad and frequently radially symmetrical. By decomposing tuning curves using the Fourier transform, we identified an equivalence in tuning between PoSub-FS and PoSub-HD cell populations. Furthermore, recordings, optogenetic manipulations of upstream thalamic populations and computational modeling provide evidence that the tuning of PoSub-FS cells has a local origin. These findings support the notion that the equivalence of neuronal tuning between excitatory and inhibitory cell populations is an intrinsic property of local cortical networks.


Assuntos
Neurônios , Tálamo , Camundongos , Animais , Neurônios/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação/fisiologia
2.
Behav Neurosci ; 133(6): 602-613, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31580093

RESUMO

Previous results suggest that directional information from the head direction cell circuit may inform hippocampal place cell firing when an animal is confronted with visually identical environments. To investigate whether such information might also be essential for spatial behavior, we tested adult, male Lister Hooded rats that had received either bilateral lateral mammillary nuclei (LMN) lesions or sham lesions on a four-way, conditional odor-location discrimination in compartments arranged at 60° to one another. We found that significantly fewer rats in the LMN lesion group were able to learn the task compared to the Sham group. We also found that the extent of the behavioral impairment was highly correlated with the degree of tissue loss in the LMN resulting from the lesion. Animals with LMN lesions were also impaired in a nonmatching-to-sample task in a T maze, and the extent of impairment likewise depended on the extent of the lesion. Performance in the odor-location and T-maze tasks was not affected by tissue loss in the medial mammillary nuclei. Together, these results indicate that the LMN, a key node in the head direction circuit, is critical for solving a spatial task that requires a directional discrimination. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Comportamento Espacial/fisiologia , Processamento Espacial/fisiologia , Potenciais de Ação , Animais , Cabeça/fisiologia , Masculino , Corpos Mamilares/lesões , Corpos Mamilares/fisiopatologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Endogâmicos , Tálamo/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA