Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512948

RESUMO

Mosquitoes of the genera Aedes, Anopheles and Culex vector a wide range of pathogens seriously affecting humans and livestock on a global scale. Over-reliance on insecticides and repellents has driven research into alternative, naturally-derived compounds to fulfil the same objectives. Steam distilled extracts of four plants with strong, yet attractive, volatile profiles were initially assessed for repellency in a dual-port olfactometer using Aedes aegypti as the model species. Picea sitchensis was found to be the most repellent, proving comparable to leading products when applied at 100% (p = 1.000). Key components of conifer-derived volatile profiles were then screened via electroantennography before those components eliciting an electrophysiological response were assayed individually in the olfactometer; according to WHO protocol. The most promising 5 were selected for reductive analyses to produce an optimised semiochemical blend. This combination, and a further two variations of the blend, were then progressed to a multi-species analysis using the BG-test whereby bite-attempt frequency on hands was assessed under different repellent treatments; assays were compared between Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Efficacy was found against all three species, although it was found that Ae. aegypti was the most susceptible to the repellent, with An. gambiae being the least. Here, a novel, naturally-derived blend is presented with weak spatial repellency, as confirmed in laboratory assays. Further work will be required to assess the full extent of the potential of the products, both in terms of field application and species screening; however, the success of the products developed demonstrate that plant metabolites have great capacity for use in the repellent sector; both to improve upon known compounds and to reduce the usage of toxic products currently on the market.


Assuntos
Aedes , Anopheles , Culex , Culicidae , Repelentes de Insetos , Inseticidas , Humanos , Animais , Mosquitos Vetores , Extratos Vegetais/farmacologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia
2.
Epilepsia ; 57(4): 538-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26920914

RESUMO

Despite availability of effective antiepileptic drugs (AEDs), many patients with epilepsy continue to experience refractory seizures and adverse events. Achievement of better seizure control and fewer side effects is key to improving quality of life. This review describes the rationale for the discovery and preclinical profile of brivaracetam (BRV), currently under regulatory review as adjunctive therapy for adults with partial-onset seizures. The discovery of BRV was triggered by the novel mechanism of action and atypical properties of levetiracetam (LEV) in preclinical seizure and epilepsy models. LEV is associated with several mechanisms that may contribute to its antiepileptic properties and adverse effect profile. Early findings observed a moderate affinity for a unique brain-specific LEV binding site (LBS) that correlated with anticonvulsant effects in animal models of epilepsy. This provided a promising molecular target and rationale for identifying selective, high-affinity ligands for LBS with potential for improved antiepileptic properties. The later discovery that synaptic vesicle protein 2A (SV2A) was the molecular correlate of LBS confirmed the novelty of the target. A drug discovery program resulted in the identification of anticonvulsants, comprising two distinct families of high-affinity SV2A ligands possessing different pharmacologic properties. Among these, BRV differed significantly from LEV by its selective, high affinity and differential interaction with SV2A as well as a higher lipophilicity, correlating with more potent and complete seizure suppression, as well as a more rapid brain penetration in preclinical models. Initial studies in animal models also revealed BRV had a greater antiepileptogenic potential than LEV. These properties of BRV highlight its promising potential as an AED that might provide broad-spectrum efficacy, associated with a promising tolerability profile and a fast onset of action. BRV represents the first selective SV2A ligand for epilepsy treatment and may add a significant contribution to the existing armamentarium of AEDs.


Assuntos
Anticonvulsivantes/metabolismo , Descoberta de Drogas/tendências , Epilepsia/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pirrolidinonas/metabolismo , Animais , Anticonvulsivantes/uso terapêutico , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Epilepsia/tratamento farmacológico , Humanos , Ligantes , Pirrolidinonas/uso terapêutico , Resultado do Tratamento
3.
Bioorg Med Chem Lett ; 17(2): 428-33, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17074479

RESUMO

Two independent approaches resulted in the identification of a series of isoindolone derivatives as potent and selective 5-HT2C antagonists. From a Medicinal Chemistry perspective this template was considered interesting as it allowed the incorporation of the carbon-carbon double bond of an earlier dihydropyrrolone series in an aromatic system within a comparatively simple and compact motif. Additionally an in silico screening approach of the corporate database using a 5-HT2C pharmacophore model resulted in the identification of a related structure containing this template. The strategy used to optimise potency at the target receptor and to improve the pharmacokinetic profile is described, resulting in molecules combining high potency with good selectivity and oral bioavailability.


Assuntos
Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/farmacologia , Animais , Disponibilidade Biológica , Bases de Dados Factuais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Isoindóis , Masculino , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA