Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 71: 126919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35038618

RESUMO

PURPOSE: It has been hypothesized that compounds with strong anti-oxidant activity might mitigate lead-induced neurotoxicity that resulted to neuronal degeneration.Ginkgo biloba supplement (GB-S) is a neuroactive supplement which has been reported to demonstrate neuroprotective effects. In this study, we investigated the reversal effect and the underlying mechanism of GB-S following lead-induced neurotoxicity in mice. METHODS: Male Swiss mice (n = 8) were pre-treated with lead acetate (100 mg/kg) for 30 min before GB-S (10 mg/kg and 20 mg/kg) or Ethylenediaminetetraacetic acid (EDTA) (50 mg/kg) intraperitoneally for 14 consecutive days. Memory impairment symptoms were evaluated on day 13 and 14 using Y-maze and Novel object recognition test (NORT) respectively. Thereafter, spectrophotometry, ELISA, immunohistochemistry and histomorphormetry were used to estimate the degree and expression of biomarkers of neuronal inflammation: oxido-inflammatory stress, apoptosis and degeneration in the hippocampus (HC). RESULTS: Lead acetate treatment significantly (p < 0.05) induced neurobehavioral impairment which was reversed by GB-S as evident in increased percentage alternation and discrimination index. GB-S significantly (p < 0.05) reduced lipid peroxidation and nitrite level, inhibited TNF-α and acetylcholinesterase activity and improved glutathione, catalase and superoxide dismutase activity in the HC. Moreover, GB-S inhibited hippocampal apoptosis via elevated expression of caspase-3 with marked increase level of brain derived neurotrophic factor (BDNF). Also, the histomorphormetric study showed that GB-S rescued death of pyramidal neurons (CA3) in the HC. CONCLUSION: Our findings however suggest that GB-S decreased memory impairment progression induced by lead acetate via mechanisms connected to inhibition of oxido-inflammatory stress mediators, restrained acetylcholinesterase activity, up-regulated BDNF/Caspase-3 expression and suppression of hippocampal pyramidal neuron degeneration in mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ginkgo biloba , Camundongos , Masculino , Animais , Ginkgo biloba/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Regulação para Cima , Caspase 3/metabolismo , Estresse Oxidativo , Chumbo/metabolismo , Hipocampo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Células Piramidais/metabolismo , Colinérgicos , Degeneração Neural/metabolismo , Acetatos/farmacologia
2.
Psychopharmacology (Berl) ; 239(2): 399-412, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34714396

RESUMO

Excessive exposure to manganese (Mn) is associated with neurotoxicity characterized by oxidative stress, inflammation, and apoptosis induction. Selenium (Se) has been shown to possess antioxidant, anti-inflammatory, and anti-apoptotic properties in humans and animals. The present study investigated the neuroprotective mechanism of Se in rats sub-chronically treated with Mn at 30 mg/kg body weight or orally co-treated with Se at 0.2 and 0.4 mg/kg body weight for 35 consecutive days. Locomotive and exploratory profiles were recorded and computed with the aid of ANY-Maze (a video-tracking software) for 5-min trial, in a novel apparatus. The ANY-Maze analysis showed that Se significantly (p < 0.05) abated Mn-induced locomotive impairment evidenced by increased in maximum speed, total time traveled, absolute turn angle, number of line crossing, rotation and forelimb grip and decreased total time immobile, grooming, and negative geotaxis as verified by the enhanced track plot density. Furthermore, the striatum and hippocampus of the rats were excised and the levels of Mn and Se, oxidative stress markers, proinflammatory cytokines including acetylcholinesterase and caspase-3 activities were assayed. The result shows that Se abates Mn-mediated accumulation of Mn. Also, Se ameliorated Mn-induced decrease in antioxidant enzymes as well as glutathione level and increase in acetylcholinesterase activity, lipid peroxidation, proinflammatory cytokines (i.e., interleukin (IL)-6, IL-1ß, tumor necrosis factor alpha), and caspase-3 activation in the striatum and hippocampus of the rats. Collectively, Se abated Mn-induced striatal and hippocampal toxicity via abrogation of neurobehavioral deficits, biometal accumulation, oxidative stress, inflammation, and caspase-3 activation in rats. Se may serve as a neuroprotective agent against Mn-mediated neurotoxicity.


Assuntos
Selênio , Oligoelementos , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Hipocampo/metabolismo , Inflamação , Manganês/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar , Selênio/farmacologia
3.
Drug Metab Pers Ther ; 36(3): 223-231, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-34412171

RESUMO

OBJECTIVES: This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS: Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS: The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS: Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.


Assuntos
Acetilcolinesterase , Moringa oleifera , Animais , Dieta , Hipocampo , Humanos , Masculino , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA