Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microbiome ; 10(1): 136, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008821

RESUMO

BACKGROUND: Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS: At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS: This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.


Assuntos
Nascimento Prematuro , Probióticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Suplementos Nutricionais , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro
2.
ACS Infect Dis ; 7(6): 1569-1577, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33826296

RESUMO

Increasing multidrug resistance in Neisseria gonorrheae is a growing public health crisis. Resistance to the last line therapies, cephalosporins and azithromycin, are of particular concern, fueling the need to discover new treatments. Here, we identified the phosphoglycolipid moenomycin from a screen of microbial natural products against drug-resistant N. gonorrheae as a potent antigonococcal agent. Moenomycin demonstrates excellent activity (MIC = 0.004-0.03 µg/mL) against a variety of multidrug-resistant N. gonorrheae. Importantly, moenomycin, thought to be a Gram-positive specific antibiotic, penetrates the Gram-negative gonococcal outer membrane. Moenomycin causes intracellular accumulation of peptidoglycan precursors, cell blebbing, and rupture of the cell envelope, all consistent with cell wall biosynthesis inhibition. Serial bacterial exposure to moenomycin for 14 days revealed slow development of resistance (MICDay14 = 0.03-0.06 µg/mL), unlike the clinically used drug azithromycin. Our results offer the potential utility of moenomycin as a lead for antigonococcal therapeutic candidates and warrant further investigation.


Assuntos
Bambermicinas , Produtos Biológicos , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Peptidoglicano , Extratos Vegetais
3.
Microb Biotechnol ; 12(1): 55-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565871

RESUMO

The natural product specialized metabolites produced by microbes and plants are the backbone of our current drugs. Despite their historical importance, few pharmaceutical companies currently emphasize their exploitation in new drug discovery and instead favour synthetic compounds as more tractable alternatives. Ironically, we are in a Golden Age of understanding of natural product biosynthesis, biochemistry and engineering. These advances have the potential to usher in a new era of natural product exploration and development taking full advantage of the unique and favourable properties of natural products compounds in drug discovery.


Assuntos
Bactérias/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Plantas/química , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Plantas/genética , Plantas/metabolismo , Tecnologia Farmacêutica/métodos
4.
ACS Infect Dis ; 3(12): 955-965, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29069544

RESUMO

Actinomycete secondary metabolites are a renowned source of antibacterial chemical scaffolds. Herein, we present a target-specific approach that increases the detection of antimetabolites from natural sources by screening actinomycete-derived extracts against nutrient transporter deletion strains. On the basis of the growth rescue patterns of a collection of 22 Escherichia coli (E. coli) auxotrophic deletion strains representative of the major nutrient biosynthetic pathways, we demonstrate that antimetabolite detection from actinomycete-derived extracts prepared using traditional extraction platforms is masked by nutrient supplementation. In particular, we find poor sensitivity for the detection of antimetabolites targeting vitamin biosynthesis. To circumvent this and as a proof of principle, we exploit the differential activity of actinomycete extracts against E. coli ΔyigM, a biotin transporter deletion strain versus wildtype E. coli. We achieve more than a 100-fold increase in antimetabolite sensitivity using this method and demonstrate a successful bioassay-guided purification of the known biotin antimetabolite, amiclenomycin. Our findings provide a unique solution to uncover the full potential of naturally derived antibiotics.


Assuntos
Actinobacteria/metabolismo , Antimetabólitos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas , Actinobacteria/crescimento & desenvolvimento , Antimetabólitos/farmacologia , Biotina/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana
5.
ACS Infect Dis ; 1(11): 533-43, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-27623408

RESUMO

The widespread emergence of antibiotic drug resistance has resulted in a worldwide healthcare crisis. In particular, the extensive use of ß-lactams, a highly effective class of antibiotics, has been a driver for pervasive ß-lactam resistance. Among the most important resistance determinants are the metallo-ß-lactamases (MBL), which are zinc-requiring enzymes that inactivate nearly all classes of ß-lactams, including the last-resort carbapenem antibiotics. The urgent need for new compounds targeting MBL resistance mechanisms has been widely acknowledged; however, the development of certain types of compounds-namely metal chelators-is actively avoided due to host toxicity concerns. The work herein reports the identification of a series of zinc-selective spiro-indoline-thiadiazole analogues that, in vitro, potentiate ß-lactam antibiotics against an MBL-carrying pathogen by withholding zinc availability. This study demonstrates the ability of one such analogue to inhibit NDM-1 in vitro and, using a mouse model of infection, shows that combination treatment of the respective analogue with meropenem results in a significant decrease in bacterial burden in contrast to animals that received antibiotic treatment alone. These results support the therapeutic potential of these chelators in overcoming antibiotic resistance.

6.
Nature ; 510(7506): 503-6, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965651

RESUMO

The emergence and spread of carbapenem-resistant Gram-negative pathogens is a global public health problem. The acquisition of metallo-ß-lactamases (MBLs) such as NDM-1 is a principle contributor to the emergence of carbapenem-resistant Gram-negative pathogens that threatens the use of penicillin, cephalosporin and carbapenem antibiotics to treat infections. To date, a clinical inhibitor of MBLs that could reverse resistance and re-sensitize resistant Gram-negative pathogens to carbapenems has not been found. Here we have identified a fungal natural product, aspergillomarasmine A (AMA), that is a rapid and potent inhibitor of the NDM-1 enzyme and another clinically relevant MBL, VIM-2. AMA also fully restored the activity of meropenem against Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. possessing either VIM or NDM-type alleles. In mice infected with NDM-1-expressing Klebsiella pneumoniae, AMA efficiently restored meropenem activity, demonstrating that a combination of AMA and a carbapenem antibiotic has therapeutic potential to address the clinical challenge of MBL-positive carbapenem-resistant Gram-negative pathogens.


Assuntos
Ácido Aspártico/análogos & derivados , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Tienamicinas/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases , Animais , Antibacterianos/farmacologia , Ácido Aspártico/isolamento & purificação , Ácido Aspártico/farmacologia , Aspergillus/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Meropeném , Camundongos , beta-Lactamases/genética , beta-Lactamases/metabolismo
7.
Chem Biol ; 21(1): 136-45, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24361049

RESUMO

The dwindling supply of antibiotics that remain effective against drug-resistant bacterial pathogens has precipitated efforts to identify new compounds that inhibit bacterial growth using untapped mechanisms of action. Here, we report both (1) a high-throughput screening methodology designed to discover chemical perturbants of the essential, yet unexploited, process of bacterial iron homeostasis, and (2) our findings from a small-molecule screen of more than 30,000 diverse small molecules that led to the identification and characterization of two spiro-indoline-thiadiazoles that disrupt iron homeostasis in bacteria. We show that these compounds are intracellular chelators with the capacity to exist in two isomeric states. Notably, these spiroheterocyles undergo a transition to an open merocyanine chelating form with antibacterial activity that is specifically induced in the presence of its transition-metal target.


Assuntos
Escherichia coli/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Compostos Organometálicos/farmacologia , Elementos de Transição/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzopiranos/síntese química , Benzopiranos/química , Benzopiranos/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Quelantes de Ferro/síntese química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Bibliotecas de Moléculas Pequenas , Compostos de Espiro/química , Estereoisomerismo , Relação Estrutura-Atividade , Tiadiazóis/química , Fatores de Transcrição/antagonistas & inibidores , Elementos de Transição/química
8.
Nat Biotechnol ; 31(10): 922-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24056948

RESUMO

Microbially derived natural products are major sources of antibiotics and other medicines, but discovering new antibiotic scaffolds and increasing the chemical diversity of existing ones are formidable challenges. We have designed a screen to exploit the self-protection mechanism of antibiotic producers to enrich microbial libraries for producers of selected antibiotic scaffolds. Using resistance as a discriminating criterion we increased the discovery rate of producers of both glycopeptide and ansamycin antibacterial compounds by several orders of magnitude in comparison with historical hit rates. Applying a phylogeny-based screening filter for biosynthetic genes enabled the binning of producers of distinct scaffolds and resulted in the discovery of a glycopeptide antibacterial compound, pekiskomycin, with an unusual peptide scaffold. This strategy provides a means to readily sample the chemical diversity available in microbes and offers an efficient strategy for rapid discovery of microbial natural products and their associated biosynthetic enzymes.


Assuntos
Antibacterianos/biossíntese , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência Microbiana a Medicamentos , Actinobacteria/química , Actinobacteria/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Glicopeptídeos/biossíntese , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Glicopeptídeos/farmacologia , Filogenia , Reprodutibilidade dos Testes , Rifampina/química , Rifampina/farmacologia , Vancomicina/química , Vancomicina/isolamento & purificação , Vancomicina/farmacologia
9.
Nat Chem Biol ; 7(6): 348-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21516114

RESUMO

Combinations of antibiotics are commonly used in medicine to broaden antimicrobial spectrum and generate synergistic effects. Alternatively, combination of nonantibiotic drugs with antibiotics offers an opportunity to sample a previously untapped expanse of bioactive chemical space. We screened a collection of drugs to identify compounds that augment the activity of the antibiotic minocycline. Unexpected synergistic drug combinations exhibited in vitro and in vivo activity against bacterial pathogens, including multidrug-resistant isolates.


Assuntos
Antibacterianos/farmacologia , Quimioterapia Combinada/métodos , Antibacterianos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Minociclina/farmacologia , Minociclina/uso terapêutico
10.
J Comb Chem ; 11(1): 155-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19072614

RESUMO

alpha-exo-Methylene-gamma-lactones and alpha-exo-methylene-gamma-lactams are key structural units in a wide variety of natural products. These substances exhibit a high degree of bioactivity against numerous biological targets that play important roles in several diseases. A library of functionalized gamma-lactones and gamma-lactams containing both unsaturated and saturated side chains at the alpha position of the ring was synthesized. The generation of this library first involves sequential allylation of aldehydes or imines with 2-alkoxycarbonyl allylboronates, followed by ring closure to give alpha-exo-methylene-gamma-lactones or alpha-exo-methylene-gamma-lactams, which are subjected to various transition metal catalyzed coupling reactions to introduce additional diversity. A subset of the library was screened for inhibition of homoserine transacetylase (HTA) from Haemophilus influenzae and showed promising initial activity profiles.


Assuntos
Antivirais/síntese química , Lactamas/síntese química , Lactonas/síntese química , Acetiltransferases/antagonistas & inibidores , Aldeídos/química , Ácidos Borônicos , Avaliação Pré-Clínica de Medicamentos , Haemophilus influenzae/enzimologia , Iminas/química , Lactamas/farmacologia , Lactonas/farmacologia
11.
Anim Health Res Rev ; 9(2): 237-46, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19006597

RESUMO

Antimicrobial resistance is a rapidly increasing problem impacting the successful treatment of bacterial infectious disease. To combat resistance, the development of new treatment options is required. Recent advances in technology have aided in the discovery of novel antibacterial agents, specifically through genome mining for novel natural product biosynthetic gene clusters and improved small molecule high-throughput screening methods. Novel targets such as lipopolysaccharide and fatty acid biosyntheses have been identified by essential gene studies, representing a shift from traditional antibiotic targets. Finally, inhibiting non-essential genes with small molecules is being explored as a method for rescuing the activity of 'old' antibiotics, providing a novel synergistic approach to antimicrobial discovery.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/veterinária , Genômica , Testes de Sensibilidade Microbiana/veterinária , Animais , Antibacterianos/efeitos adversos , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/uso terapêutico , Contagem de Colônia Microbiana/veterinária , Terapia Combinada , Biologia Computacional , Formas de Dosagem , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Indústria Farmacêutica , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Genômica/tendências , Humanos , Testes de Sensibilidade Microbiana/métodos , Resultado do Tratamento
12.
Chem Biol ; 13(4): 437-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16632256

RESUMO

The lipopolysaccharide (LPS)-rich outer membrane of gram-negative bacteria provides a protective barrier that insulates these organisms from the action of numerous antibiotics. Breach of the LPS layer can therefore provide access to the cell interior to otherwise impermeant toxic molecules and can expose vulnerable binding sites for immune system components such as complement. Inhibition of LPS biosynthesis, leading to a truncated LPS molecule, is an alternative strategy for antibacterial drug development in which this vital cellular structure is weakened. A significant challenge for in vitro screens of small molecules for inhibition of LPS biosynthesis is the difficulty in accessing the complex carbohydrate substrates. We have optimized an assay of the enzymes required for LPS heptose biosynthesis that simultaneously surveys five enzyme activities by using commercially available substrates and report its use in a small-molecule screen that identifies an inhibitor of heptose synthesis.


Assuntos
Açúcares de Adenosina Difosfato/biossíntese , Inibidores Enzimáticos/farmacologia , Glicosiltransferases/antagonistas & inibidores , Lipopolissacarídeos/biossíntese , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/metabolismo , Cinética , Testes de Sensibilidade Microbiana , Complexos Multienzimáticos/antagonistas & inibidores , Nucleotidiltransferases/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Proteínas Recombinantes/antagonistas & inibidores
13.
Biochemistry ; 41(22): 7001-7, 2002 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-12033933

RESUMO

The aminoglycoside antibiotic resistance kinases (APHs) and the Ser/Thr/Tyr protein kinases share structural and functional homology but very little primary sequence conservation (<5%). A region of structural, but not amino acid sequence, homology is the nucleotide positioning loop (NPL) that closes down on the enzyme active site upon binding of ATP. This loop region has been implicated in facilitating phosphoryl transfer in protein kinases; however, there is no primary sequence conservation between APHs and protein kinases in the NPL. There is an invariant Ser residue in all APH NPL regions, however. This residue in APH(3')-IIIa (Ser27), an enzyme widespread in aminoglycoside-resistant Enterococci, Streptococci, and Staphylococci, directly interacts with the beta-phosphate of ATP through the Ser hydroxymethyl group and the amide hydrogen in the 3D structure of the enzyme. Mutagenesis of this residue to Ala and Pro supported a role for the Ser amide hydrogen in nucleotide capture and phosphoryl transfer. A molecular model of the proposed dissociative transition state, which is consistent with all of the available mechanistic data, suggested a role for the amide of the adjacent Met26 in phosphoryl transfer. Mutagenesis studies confirmed the importance of the amide hydrogen and suggest a mechanism where Ser27 anchors the ATP beta-phosphate facilitating bond breakage with the gamma-phosphate during formation of the metaphosphate-like transition, which is stabilized by interaction with the amide hydrogen of Met26. The APH NPL therefore acts as a lever, promoting phosphoryl transfer to the aminoglycoside substrate, with the biological outcome of clinically relevant antibiotic resistance.


Assuntos
Trifosfato de Adenosina/metabolismo , Canamicina Quinase/metabolismo , Metionina/metabolismo , Nucleotídeos/química , Fósforo/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Aminoglicosídeos/metabolismo , Sítios de Ligação/fisiologia , Canamicina Quinase/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/fisiologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA