Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 8(4): 193, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27043622

RESUMO

Oxidative stress is a major cause of drug-induced hepatic diseases and several studies have demonstrated that diet supplementation with plants rich in antioxidant compounds provides a variety of health benefits in these circumstances. Genista quadriflora Munby (Gq) and Teucrium polium geyrii Maire (Tp) are known to possess antioxidant and numerous biological properties and these endemic plants are often used for dietary or medicinal applications. Herein, we evaluated the beneficial effect of rich-polyphenol fractions of Gq and Tp to prevent Acetaminophen-induced liver injury and investigated the mechanisms involved in this protective action. Rats were orally administered polyphenolic extracts from Gq or Tp (300 mg/kg) or N-acetylcysteine (NAC: 200 mg/kg) once daily for ten days prior to the single oral administration of Acetaminophen (APAP: 1 g/kg). The results show that preventive administration of polyphenolic extracts from Gq or Tp exerts a hepatoprotective influence during APAP treatment by improving transaminases leakage and liver histology and stimulating antioxidant defenses. Besides, suppression of liver CYP2E1, GSTpi and TNF-α mRNA levels, with enhancement of mitochondrial bioenergetics may contribute to the observed hepatoprotection induced by Gq and Tp extracts. The effect of Tp extract is significantly higher (1.5-2 fold) than that of Gq extract and NAC regarding the enhancement of mitochondrial functionality. Overall, this study brings the first evidence that pretreatment with these natural extracts display in vivo protective activity against APAP hepatotoxicity through improving mitochondrial bioenergetics, oxidant status, phase I and II enzymes expression and inflammatory processes probably by virtue of their high total polyphenols content.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Genista/química , Polifenóis/farmacologia , Teucrium/química , Animais , Cromatografia em Camada Fina , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transaminases/sangue , Transaminases/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Br J Nutr ; 106(4): 491-501, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554810

RESUMO

Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial ß-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.


Assuntos
Suplementos Nutricionais , Ácidos Graxos/metabolismo , Flavonoides/uso terapêutico , Frutas/química , Músculo Esquelético/metabolismo , Fenóis/uso terapêutico , Extratos Vegetais/uso terapêutico , Vitis/química , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Fitoterapia , Polifenóis , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
3.
Br J Nutr ; 104(12): 1760-70, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20673376

RESUMO

High-fat or high-fat-high-sucrose diets are known to induce non-alcoholic fatty liver disease and this is emerging as one of the most common liver diseases worldwide. Some polyphenols have been reported to decrease rat hepatic lipid accumulation, in particular those extracted from red grapes such as resveratrol. The present study was designed to determine whether a polyphenol extract (PPE), from red grapes, modulates liver fatty acid composition and desaturase activity indexes in rats fed a high-fat-high-sucrose (HFHS) diet, and to explore whether sirtuin-1 deacetylase activation was implicated in the effect of the PPE against liver steatosis. The effect of this PPE on mitochondriogenesis and mitochondrial activity was also explored. The PPE decreased liver TAG content in HFHS+PPE diet-fed rats in comparison with HFHS diet-fed rats. The PPE had no effect on liver fatty acid composition, desaturase activity indexes and stearoyl-CoA desaturase 1 (SCD1) gene expression. Sirtuin-1 deacetylase protein expression was significantly increased with the PPE; AMP kinase protein expression was higher with the PPE in comparison with the HFHS rats, but no modification of phosphorylated AMP kinase was observed. Protein expression of phospho-acetyl-CoA carboxylase was decreased in HFHS rats and returned to basal values with the PPE. Finally, the PPE modulated PPARγ coactivator-1α (PGC-1α) but did not modify mitochondriogenesis and mitochondrial activity. In conclusion, the PPE partially prevented the accumulation of TAG in the liver by regulating acetyl-CoA carboxylase phosphorylation, a key enzyme in lipid metabolism, probably via sirtuin-1 deacetylase activation. However, the PPE had no effect on the qualitative composition of liver fatty acids.


Assuntos
Ácidos Graxos/metabolismo , Flavonoides/farmacologia , Fígado/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Animais , Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Flavonoides/química , Masculino , Fenóis/química , Extratos Vegetais/química , Polifenóis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
4.
Mol Endocrinol ; 20(4): 749-63, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16322094

RESUMO

The regulation of gene expression by thyroid hormone (T3) involves binding of the hormone to nuclear receptors [thyroid hormone receptor (TR)] acting as T3-dependent transcription factors encoded by TRalpha (NR1A1) and TRbeta (NR1A2) genes. Several TRalpha variants have already been characterized, but only some of them display T3 binding activity. In this study, we have identified another transcript, TRalpha-DeltaE6, produced by alternative splicing with microexon 6b instead of exon 6. This splicing leads to the synthesis of a protein devoid of a hinge domain. The TRalpha-DeltaE6 transcript is detected in all mouse tissues tested. Although TRalpha-DeltaE6 did not bind DNA, its expression induced a TRalpha1 sequestration in the cytoplasm. Functional studies demonstrated that TRalpha-DeltaE6 inhibits the transcriptional activity of TRalpha1 and retinoic X receptor-alpha, but not of retinoic acid receptor-alpha. We also found that TRalpha-DeltaE6 efficiently decreased the ability of TRalpha to inhibit MyoD transcriptional activity during myoblast proliferation. Consequently, when overexpressed in myoblasts, it stimulated terminal differentiation. We suggest that this novel TRalpha variant may act as down regulator of overall T3 receptor activity, including its ability to repress MyoD transcriptional activity during myoblast proliferation.


Assuntos
Mioblastos/citologia , Mioblastos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Galinhas , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica , Variação Genética , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Codorniz , Coelhos , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA