Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Oleo Sci ; 73(2): 239-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311413

RESUMO

Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.


Assuntos
Caenorhabditis elegans , Gorduras Insaturadas na Dieta , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Rana catesbeiana/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Óleo de Soja/metabolismo , Metabolismo dos Lipídeos/genética
2.
J Am Chem Soc ; 144(51): 23405-23420, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36513373

RESUMO

Aqueous Zn/MnO2 batteries (AZMOB) with mildly acidic electrolytes hold promise as potential green grid-level energy storage solutions for clean power generation. Mechanistic understanding is critical to advance capacity retention needed by the application but is complex due to the evolution of the cathode solid phases and the presence of dissolved manganese in the electrolyte due to a dissolution-deposition redox process. This work introduces operando multiphase extended X-ray absorption fine structure (EXAFS) analysis enabling simultaneous characterization of both aqueous and solid phases involved in the Mn redox reactions. The methodology was successfully conducted in multiple electrolytes (ZnSO4, Zn(CF3SO3)2, and Zn(CH3COO)2) revealing similar manganese coordination environments but quantitative differences in distribution of Mnn+ species in the solid and solution phases. Complementary Raman spectroscopy was utilized to identify the less crystalline Mn-containing products formed under charge at the cathodes. This was further augmented by transmission electron microscopy (TEM) to reveal the morphology and surface condition of the deposited solids. The results demonstrate an effective approach for bulk-level characterization of poorly crystalline multiphase solids while simultaneously gaining insight into the dissolved transition-metal species in solution. This work provides demonstration of a useful approach toward gaining insight into complex electrochemical mechanisms where both solid state and dissolved active materials are important contributors to redox activity.

3.
Oxid Med Cell Longev ; 2021: 8874503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055199

RESUMO

The marine horseshoe crab (Tachypleus tridentatus) has been considered as food and traditional medicine for many years. Kynurenic acid (KA) was isolated from horseshoe crab in this study for the first time in the world. A previous study in 2018 reported that intraperitoneal administration of KA prevented high-fat diet- (HFD-) induced body weight gain. Now, we investigated the effects of intragastric gavage of KA on HFD mice and found that KA (5 mg/kg/day) inhibited both the body weight gain and the increase of average daily energy intake. KA reduced serum triglyceride and increased serum high-density lipoprotein cholesterol. KA inhibited HFD-induced the increases of serum low-density lipoprotein cholesterol, coronary artery risk index, and atherosclerosis index. KA also suppressed HFD-induced the increase of the ratio of Firmicutes to Bacteroidetes (two dominant gut microbial phyla). KA partially reversed HFD-induced the changes in the composition of gut microbial genera. These overall effects of KA on HFD mice were similar to that of simvastatin (positive control). But the effects of 1.25 mg/kg/day KA on HFD-caused hyperlipidemia were similar to the effects of 5 mg/kg/day simvastatin. The pattern of relative abundance in 40 key genera of gut microbiota from KA group was closer to that from the normal group than that from the simvastatin group. In addition, our in vitro results showed the potential antioxidant activity of KA, which suggests that the improvement effects of KA on HFD mice may be partially associated with antioxidant activity of KA. Our findings demonstrate the potential role of KA as a functional food ingredient for the treatment of obesity and hyperlipidemia as well as the modulation of gut microbiota.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Ácido Cinurênico/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Caranguejos Ferradura , Ácido Cinurênico/farmacologia , Masculino , Camundongos
4.
Small ; 16(48): e2005406, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33166057

RESUMO

Aqueous Zn/α-MnO2 batteries have attracted immense interest owing to their high energy density, low cost, and safety, making them desirable for future large-scale energy application. Despite these merits, the comprehensive understanding of their reaction mechanism has been elusive due to the limitations of standard bulk characterization. Here, via transmission electron microscopy, the dissolution-mediated reaction mechanism of a Zn/α-MnO2 system is discovered and explored in full scope to involve reversible formation of Zn4 SO4 (OH)6 ·xH2 O and "birnessite-like" Zn-MnOx phase upon cycling. Overall, α-MnO2 acts primarily as a source for cell activation through dissolution and thus is not directly involved in the Zn redox chemistry. This microscopic study offers a unique knowledge on the unconventional reaction chemistry of Zn/α-MnO2 batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA