RESUMO
Prostacyclin (PGI2) is a potent vasodilator and important mediator of vascular homeostasis; however, its clinical use is limited because of its short (<2-min) half-life. Thus, we hypothesize that the use of engineered endothelial progenitor cells (EPCs) that constitutively secrete high levels of PGI2 may overcome this limitation of PGI2 therapy. A cDNA encoding COX-1-10aa-PGIS, which links human cyclooxygenase-1 (COX-1) to prostacyclin synthase (PGIS), was delivered via nucleofection into outgrowth EPCs derived from rat bone marrow mononuclear cells. PGI2-secreting strains (PGI2-EPCs) were established by continuous subculturing of transfected cells under G418 selection. Genomic PCR, RT-PCR, and Western blot analyses confirmed the overexpression of COX-1-10aa-PGIS in PGI2-EPCs. PGI2-EPCs secreted significantly higher levels of PGI2 in vitro than native EPCs (P < 0.05) and showed higher intrinsic angiogenic capability; conditioned medium (CM) from PGI2-EPCs promoted better tube formation than CM from native EPCs (P < 0.05). Cell- and paracrine-mediated in vitro angiogenesis was attenuated when COX-1-10aa-PGIS protein expression was knocked down. Whole-cell patch-clamp studies showed that 4-aminopyridine-sensitive K(+) current density was increased significantly in rat smooth muscle cells (rSMCs) cocultured under hypoxia with PGI2-EPCs (7.50 ± 1.59 pA/pF; P < 0.05) compared with rSMCs cocultured with native EPCs (3.99 ± 1.26 pA/pF). In conclusion, we successfully created EPC strains that overexpress an active novel enzyme resulting in consistent secretion of PGI2. PGI2-EPCs showed enhanced intrinsic proangiogenic properties and provided favorable paracrine-mediated cellular protections, including promoting in vitro angiogenesis of native EPCs and hyperpolarization of SMCs under hypoxia.
Assuntos
Engenharia Celular/métodos , Endotélio Vascular/metabolismo , Epoprostenol/biossíntese , Epoprostenol/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células-Tronco/metabolismo , 4-Aminopiridina/metabolismo , Animais , Apoptose/genética , Processos de Crescimento Celular/genética , Meios de Cultivo Condicionados/metabolismo , Ciclo-Oxigenase 1/genética , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , Endotélio Vascular/citologia , Epoprostenol/metabolismo , Meia-Vida , Hipóxia/genética , Hipóxia/metabolismo , Oxirredutases Intramoleculares/genética , Proteínas de Membrana/genética , Músculo Liso Vascular/citologia , Neovascularização Fisiológica , Fenótipo , Canais de Potássio/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção/métodosRESUMO
It has been postulated that the loss of arterial compliance may precede cardiovascular diseases, and that arterial compliance is an important parameter to consider when evaluating arterial diseases such as essential hypertension (EH) and the effects of antihypertensive treatment. In all, 133 EH patients and 147 healthy subjects were enrolled in this study. Large arterial compliance (C1) and small arterial compliance (C2) were measured by the CVProfilor DO-2020 CardioVascular Profiling System. Thirty-five patients randomly received magnesium potassium supplementation (magnesium, 70.8 mg/d; potassium, 217.2 mg/d) for four weeks, and 32 patients received lacidipin (4 mg/d) as a control. Before and after the four weeks, blood pressure, C1, and C2 were measured. It was found that arterial compliance was significantly lower in EH patients compared with healthy subjects (C1: 12.53 +/- 0.33 vs. 15.63 +/- 0.30 ml/mmHg x 10, p < 0.01;C2: 3.79 +/- 0.17 vs. 5.69 +/- 0.25 ml/mmHg x 100, p < 0.01). On lacidipine, systolic and diastolic BP decreased 13.27 +/- 1.76 mm Hg and 6.33 +/- 1.55 mm Hg, and C1 and C2 compliance values increased 25.05% +/- 4.49% and 34.50% +/- 7.40%, respectively. On K+ and Mg2+ supplementation, systolic and diastolic BP decreased 7.83 +/- 1.87 mm Hg and 3.67 +/- 1.03 mm Hg, and C1 and C2 compliance values increased 12.44% +/- 4.43% and 45.25% +/- 6.67%, respectively. Decreases in systemic vascular resistance (mean arterial pressure divided by cardiac output) by 11.9% and 16.6 % (p < 0.01) were seen between the drug-induced changes, respectively. Both large arterial compliance and small arterial compliance were decreased in essential hypertension patients. In essential hypertension patients, magnesium and potassium supplementation could improve small arterial compliance, while lacidipine improved large arterial compliance significantly.