Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Adv Exp Med Biol ; 1446: 155-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625528

RESUMO

The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.


Assuntos
Aminoácidos , Qualidade de Vida , Gatos , Cães , Animais , Articulações , Matriz Óssea , Prolina , Mamíferos
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38271555

RESUMO

This study tested the hypothesis that dietary supplementation with glycine enhances the synthesis and concentrations of glutathione (GSH, a major antioxidant) in tissues of pigs with intrauterine growth restriction (IUGR). At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of two groups, representing supplementation with 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Blood and other tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine GSH, oxidized GSH (GSSG), and activities of GSH-metabolic enzymes. Results indicated that concentrations of GSH + GSSG or GSH in plasma, liver, and jejunum (P < 0.001) and concentrations of GSH in longissimus lumborum and gastrocnemius muscles (P < 0.05) were lower in IUGR pigs than in NBW pigs. In contrast, IUGR increased GSSG/GSH ratios (an indicator of oxidative stress) in plasma (P < 0.001), jejunum (P < 0.001), both muscles (P < 0.05), and pancreas (P = 0.001), while decreasing activities of γ-glutamylcysteine synthetase and GSH synthetase in liver (P < 0.001) and jejunum (P < 0.01); and GSH reductase in jejunum (P < 0.01), longissimus lumborum muscle (P < 0.01), gastrocnemius muscle (P < 0.05), and pancreas (P < 0.01). In addition, IUGR pigs had greater (P < 0.001) concentrations of thiobarbituric acid reactive substances (TBARS; an indicator of lipid peroxidation) in plasma, jejunum, muscles, and pancreas than NBW pigs. Compared with isonitrogenous controls, dietary glycine supplementation increased concentrations of GSH plus GSSG and GSH in plasma (P < 0.01), liver (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P = 0.001), and gastrocnemius muscle (P < 0.05); activities of GSH-synthetic enzymes in liver (P < 0.01) and jejunum (P < 0.05), while reducing GSSG/GSH ratios in plasma (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P < 0.001), gastrocnemius muscle (P = 0.01), pancreas (P < 0.05), and kidneys (P < 0.01). Concentrations of GSH plus GSSG, GSH, and GSSG/GSH ratios in kidneys were not affected (P > 0.05) by IUGR. Furthermore, glycine supplementation reduced (P < 0.001) TBARS concentrations in plasma, jejunum, muscles, and pancreas. Collectively, IUGR reduced GSH availability and induced oxidative stress in pig tissues, and these abnormalities were prevented by dietary glycine supplementation in a tissue-specific manner.


Pigs have the highest rate of intrauterine growth restriction (IUGR) among livestock species. These pigs, which have low birth weights (<1.1 kg) and account for ~15% to 20% of newborn pigs, are often culled after birth because they have lower growth performance and feed efficiency due to multiple factors (including oxidative stress in tissues), when compared with litter mates with normal birth weights (NBW). Much evidence shows that glutathione, which is a tripeptide synthesized from glutamate, glycine, and cysteine via enzymes (biological catalysts, γ-glutamylcysteine synthetase, and glutathione synthetase), is a major low-molecular-weight antioxidant in animal cells. Based on the findings of our recent study that dietary glycine supplementation enhanced the growth performance of IUGR pigs from weaning to market weight, the current study tested the hypothesis that this nutritional strategy increased the synthesis and availability of glutathione in their tissues. Our results indicated that the key organs of the digestive system (the small intestine, liver, and pancreas) as well as both longissimus lumborum and gastrocnemius muscles of IUGR pigs had lower concentrations of glutathione as compared with NBW pigs, due to reductions in both the activities of glutathione-synthetic enzymes and the availability of glycine. Dietary supplementation with 1% glycine prevented these metabolic deficiencies in tissues of IUGR pigs. Our findings support the notion that IUGR pigs fed conventional corn- and soybean meal-based diets do not synthesize adequate glutathione and that dietary glycine supplementation plays an important role in enhancing the availability of glutathione and mitigating oxidative stress to improve health and growth in these compromised animals.


Assuntos
Retardo do Crescimento Fetal , Doenças dos Suínos , Feminino , Suínos , Animais , Retardo do Crescimento Fetal/veterinária , Glicina , Dissulfeto de Glutationa , Substâncias Reativas com Ácido Tiobarbitúrico , Glutationa , Suplementos Nutricionais , Ração Animal
3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38038705

RESUMO

We recently reported that supplementing glycine to soybean meal (SBM)-based diets is necessary for optimum growth of 5- to 40-g (phase I) hybrid striped bass (HSB). The present study tested the hypothesis that supplementing glycine to SBM-based diets may enhance the growth of 110- to 240-g (phase II) HSB. HSB (the initial body weight of approximately 110 g) were fed an SBM (58%)-based diet supplemented with 0%, 1%, or 2% of glycine, with l-alanine serving as the isonitrogenous control. There were four tanks per dietary group, with four fish per tank. The fish were fed their respective diets to apparent satiation twice daily. The feed intake and body weight of fish were recorded daily and every 2 wk, respectively. At the end of the 56-d feeding trial, plasma and tissue samples were collected to determine amino acid concentrations and histological alterations, and tissues were used to measure the oxidation of l-glutamate, l-glutamine, l-aspartate, and glycine. Results showed that dietary supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) the concentration of glycine in the plasma of HSB by 48% and 99%, respectively. Compared with the 0%-glycine group, dietary supplementation with 1% glycine did not affect (P > 0.05) the feed intake of HSB but increased (P < 0.05) their final body weight, weight gain, and gain:feed ratio during the whole period by 13%, 29%, and 21%, respectively. Compared with the 1% glycine group, dietary supplementation with 2% glycine increased (P < 0.05) the feed intake, final body weight, and weight gain of HSB by 13%, 7%, and 14%, respectively. Compared with the 0%-glycine group, fish fed with the 1%-glycine and 2%-glycine diets had a greater (P < 0.05) villus height in the proximal intestine, when compared with the 0%-glycine group. Collectively, these results indicated that SBM-based diets did not provide sufficient glycine for phase II HSB (110 to 240 g) and that dietary glycine supplementation is essential for their optimum growth and intestinal structure.


Glycine is the simplest but the most abundant amino acid in the bodies of animals including fish and pigs. The content of glycine in plant-sourced feedstuffs (e.g., soybean meal) is generally low. Glycine can be synthesized de novo in all animals and, therefore, has traditionally been classified as a nutritionally nonessential amino acid for fish and mammals. However, a capacity for the synthesis of glycine does not necessarily mean its adequate formation by animals. Growing evidence shows that either neonatal pigs fed milk protein-based diets or postweaning pigs regardless of their birth weights do not synthesize sufficient glycine, and must ingest supplemental glycine (e.g., 1% in diets) for optimum growth performance. Similar results have been reported for 5- to 40-g (phase I) juvenile hybrid striped bass (HSB) fed and largemouth bass fed soybean meal-based diets. The present study tested the hypothesis that supplementing glycine to soybean meal-based diets may enhance the growth of 110- to 240-g (phase II) HSB. Results of the current investigation indicate that glycine is also inadequate for normal intestinal structure or maximum growth in phase II HSB fed soybean meal-based diets. Supplementing 1% or 2% glycine to these diets increased protein accretion, weight gain, and feed efficiency in HSB while improving their intestinal structure. These findings indicate an important role for a sufficient provision of dietary glycine in the optimal nutrition, health, and growth of finishing HSB, and have broad implications for developing low-fishmeal diets to enhance fish production and sustain animal agriculture (including aquaculture).


Assuntos
Ração Animal , Bass , Suplementos Nutricionais , Animais , Ração Animal/análise , Bass/metabolismo , Peso Corporal , Dieta/veterinária , Farinha , Glicina/farmacologia , Glycine max , Aumento de Peso
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37801645

RESUMO

This study was conducted to test the hypothesis that supplementing 1% and 2% glycine to soybean meal (SBM)-based diets can improve the growth performance of juvenile hybrid striped bass (HSB). The basal diets contained 15% fishmeal and 58% SBM (DM basis). Alanine was used as the isonitrogenous control in different diets. All diets contained 44% crude protein and 10% lipids (DM basis). There were four tanks (15 fish per tank) per dietary group, with the mean of the initial body weight (BW) of fish being 5.3 g. Fish were fed to apparent satiation twice daily, and their BW was recorded every 2 wk. The trial lasted for 8 wk. Results indicated that the BW, weight gain, protein efficiency ratio, and retention of dietary lipids in fish were enhanced (P < 0.05) by dietary supplementation with 1% or 2% glycine. In addition, dietary supplementation with glycine did not affect (P > 0.05) the feed intake of fish but increased (P < 0.05) the retention of dietary nitrogen, most amino acids, and phosphorus in the body, compared to the 0% glycine group. Dietary supplementation with 1% and 2% glycine dose-dependently augmented (P < 0.05) the villus height of the proximal intestine and reduced the submucosal thickness of the gut, while preventing submucosal and lamina propria hemorrhages. Compared with the 0% glycine group, dietary supplementation with 1% or 2% glycine decreased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 40 to 60 µm but increased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 80 to 100 µm and > 100 µm. Collectively, these findings indicate that glycine in SBM-based diets is inadequate for maximum growth of juvenile HSB and that dietary supplementation with 1% or 2% glycine is required to improve their weight gain and feed efficiency. Glycine is a conditionally essential amino acid for this fish.


Animal agriculture (including aquaculture) provides high-quality protein for improving human nutrition and health. The United States is the top producer of hybrid striped bass (HSB) in the world as both food and sport fish. Fishmeal has traditionally been used as the major protein feedstuff in HSB diets, but feeding fish with fishmeal is not sustainable in the industry. Over the past four decades, there have been extensive studies to replace fishmeal with plant-sourced feedstuffs (mainly soybean meal) in aquafeeds at variable success. It has now been recognized that the content of glycine (the most abundant amino acid in the animal body) in soybean meal is only about half of that in fishmeal. Results of this study indicate that glycine is inadequate for normal intestinal structure or maximum growth in HSB fed soybean meal-based diets. Supplementing 1% or 2% glycine to these diets increased protein accretion, skeletal-muscle hypertrophy, and weight gain in HSB, while improving their intestinal structure. These findings indicate an important role for a sufficient provision of dietary glycine in the optimal nutrition, health, and growth of HSB, and have broad implications for developing low-fishmeal diets to enhance fish production and sustain animal agriculture.


Assuntos
Bass , Animais , Bass/metabolismo , Glicina/farmacologia , Farinha , Ração Animal/análise , Dieta/veterinária , Glycine max/química , Aumento de Peso , Suplementos Nutricionais , Lipídeos
5.
Front Immunol ; 14: 1241615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841275

RESUMO

Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response. Instead of targeting the pathogen itself, a preferred approach for managing fish health is through nutrient supplementation, as it is noninvasive and less labor intensive than vaccine administrations while still modulating immune properties. Amino acids (AAs) regulate metabolic processes, oxidant-antioxidant balance, and physiological requirements to improve immune response. Thus, nutritionists can develop sustainable aquafeeds through AA supplementation to promote specific immune responses, including the intestinal mucosa immune system. We propose the use of dietary supplementation with functional AAs to improve immune response by discussing teleost fish immunology within the intestine and explore how oxidative burst is used as an immune defense mechanism. We evaluate immune components and immune responses in the intestine that use oxidant-antioxidant balance through potential selection of AAs and their metabolites to improve mucosal immune capacity and gut integrity. AAs are effective modulators of teleost gut immunity through oxidant-antioxidant balance. To incorporate nutrition as an immunoregulatory means in teleost, we must obtain more tools including genomic, proteomic, nutrition, immunology, and macrobiotic and metabonomic analyses, so that future studies can provide a more holistic understanding of the mucosal immune system in fish.


Assuntos
Antioxidantes , Dieta de Imunonutrição , Animais , Humanos , Oxidantes , Imunidade nas Mucosas , Aminoácidos , Proteômica , Peixes , Mucosa Intestinal , Mamíferos
6.
Exp Biol Med (Maywood) ; 248(18): 1537-1549, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837386

RESUMO

This study tested the hypothesis that elevated L-leucine concentrations in plasma reduce nitric oxide (NO) synthesis by endothelial cells (ECs) and affect adiposity in obese rats. Beginning at four weeks of age, male Sprague-Dawley rats were fed a casein-based low-fat (LF) or high-fat (HF) diet for 15 weeks. Thereafter, rats in the LF and HF groups were assigned randomly into one of two subgroups (n = 8/subgroup) and received drinking water containing either 1.02% L-alanine (isonitrogenous control) or 1.5% L-leucine for 12 weeks. The energy expenditure of the rats was determined at weeks 0, 6, and 11 of the supplementation period. At the end of the study, an oral glucose tolerance test was performed on all the rats immediately before being euthanized for the collection of tissues. HF feeding reduced (P < 0.001) NO synthesis in ECs by 21% and whole-body insulin sensitivity by 19% but increased (P < 0.001) glutamine:fructose-6-phosphate transaminase (GFAT) activity in ECs by 42%. Oral administration of L-leucine decreased (P < 0.05) NO synthesis in ECs by 14%, increased (P < 0.05) GFAT activity in ECs by 35%, and reduced (P < 0.05) whole-body insulin sensitivity by 14% in rats fed the LF diet but had no effect (P > 0.05) on these variables in rats fed the HF diet. L-Leucine supplementation did not affect (P > 0.05) weight gain, tissue masses (including white adipose tissue, brown adipose tissue, and skeletal muscle), or antioxidative capacity (indicated by ratios of glutathione/glutathione disulfide) in LF- or HF-fed rats and did not worsen (P > 0.05) adiposity, whole-body insulin sensitivity, or metabolic profiles in the plasma of obese rats. These results indicate that high concentrations of L-leucine promote glucosamine synthesis and impair NO production by ECs, possibly contributing to an increased risk of cardiovascular disease in diet-induced obese rats.


Assuntos
Resistência à Insulina , Ratos , Masculino , Animais , Leucina/farmacologia , Óxido Nítrico , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais
7.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37837640

RESUMO

Pigs with intrauterine growth restriction (IUGR) have suboptimum growth performance and impaired synthesis of glycine (the most abundant amino acid in the body). Conventional corn- and soybean meal-based diets for postweaning pigs contain relatively low amounts of glycine and may not provide sufficient glycine to meet requirements for IUGR pigs. This hypothesis was tested using 52 IUGR pigs and 52 litter mates with normal birth weights (NBW). At weaning (21 d of age), IUGR or NBW pigs were assigned randomly to one of two nutritional groups: supplementation of a corn-soybean meal-based diet with either 1% glycine plus 0.19% cornstarch or 1.19% L-alanine (isonitrogenous control). Feed consumption and body weight (BW) of pigs were recorded daily and every 2 or 4 wks, respectively. All pigs had free access to their respective diets and clean drinking water. Within 1 wk after the feeding trial ended at 188 d of age, blood and other tissue samples were obtained from pigs to determine concentrations of amino acids and meat quality. Neither IUGR nor glycine supplementation affected (P > 0.05) feed intakes of pigs per kg BW. The final BW, gain:feed ratio, carcass dressing percentages, and four-lean-cuts percentages of IUGR pigs were 13.4 kg, 4.4%, 2%, and 15% lower (P < 0.05) for IUGR pigs than NBW pigs, respectively. Compared with pigs in the alanine group, dietary glycine supplementation increased (P < 0.05) final BW, gain:feed ratio, and meat a* value (a redness score) by 3.8 kg, 11%, and 10%, respectively, while reducing (P < 0.05) backfat thickness by 18%. IUGR pigs had lower (P < 0.05) concentrations of glycine in plasma (-45%), liver (-25%), jejunum (-19%), longissimus dorsi muscle (-23%), gastrocnemius muscle (-26%), kidney (-15%), and pancreas (-6%), as compared to NBW pigs. In addition, dietary glycine supplementation increased (P < 0.05) concentrations of glycine in plasma and all analyzed tissues. Thus, supplementing 1% of glycine to corn-soybean meal-based diets improves the growth performance, feed efficiency, and meat quality of IUGR pigs.


About 15­20% of pigs are born naturally with low birth weights (<1.1 kg) due to intrauterine growth restriction (IUGR). These pigs are often culled after birth because they have lower growth performance and feed efficiency during the production period from weaning to market weight, compared with litter mates with normal birth weights (NBW). In many countries and regions (including North America, South America, and Asia), postweaning pigs are generally fed corn- and soybean meal-based diets that contain relatively a low amount of glycine. Glycine is the most abundant amino acid in the plasma and tissue proteins of pigs but may not be formed adequately from other amino acids in the body, particularly IUGR pigs that are now known to have an impaired ability for glycine synthesis. Results of the present study indicate that IUGR pigs fed conventional corn-SBM-based diets had lower concentrations of glycine in plasma and tissues (including skeletal muscle), compared with NBW litter mates. Dietary supplementation with 1% glycine improved the growth performance, feed efficiency, and meat quality of IUGR pigs. This simple nutritional means is expected to enhance the productivity of the global swine industry.


Assuntos
Retardo do Crescimento Fetal , Doenças dos Suínos , Animais , Feminino , Aminoácidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Composição Corporal/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Retardo do Crescimento Fetal/veterinária , Glicina/farmacologia , Carne , Glycine max , Suínos
8.
Transl Anim Sci ; 7(1): txad058, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37593152

RESUMO

Nine pregnant mares (18.2 ±â€…0.7 yr; 493.82 ±â€…12.74 kg body weight [BW]) were used to test the hypothesis that dietary supplementation of l-arginine would enhance placental vascularity and nutrient transport throughout gestation in aged mares. Mares were balanced by age, BW, and stallion pairing, and assigned randomly to dietary treatments of either supplemental l-arginine (50 mg/kg BW; n = 7) or l-alanine (100 mg/kg BW; n = 6; isonitrogenous control). Mares were individually fed concentrate top-dressed with the respective amino acid treatment plus ad libitum access to Coastal Bermudagrass hay. Treatments began on day 14 of gestation and were terminated at parturition. Mare BW, body condition score (BCS), and rump fat were determined, and body fat percentage was calculated every 28 d and concentrate adjusted accordingly. Doppler blood flow measurements including resistance index (RI) and pulsatility index for uterine artery ipsilateral to the pregnant uterine horn were obtained beginning on day 21 and continued every 7 d until day 154 of gestation, and prior to parturition. Parturition was attended with foaling variables and placental measures recorded. Placental tissue from the pregnant horn was analyzed histologically to assess cell-specific localization of vascular endothelial growth factor (VEGF) and cationic amino acid transporter 1 (SLC7A1) proteins. Semiquantitative analyses were performed using 10 nonoverlapping images per sample fixed in a 10× field (Fiji ImageJ v1.2). Mare performance data were analyzed using PROC MIXED in SAS and foaling and placental data were analyzed using PROC GLM. Gestation length at parturition was not influenced (P > 0.05) by supplemental arginine. Compared with arginine-supplemented mares, control mares had a thicker rump fat layer (P < 0.01) and greater percent body fat (P = 0.03), and BCS (P < 0.01) at parturition. Arginine-supplemented mares had a lower RI than control mares prior to parturition (P < 0.01). Body length, height, and BW of foals at birth, as well as placental weight and volume, and immunohistochemical staining for VEGF and SLC7A1 at parturition, were not affected (P > 0.05) by maternal arginine supplementation. These results indicate that dietary arginine supplementation (50 mg/kg BW) is safe for gestating mares. A larger number of mares is required to extend knowledge of effects of supplemental arginine on embryonic/fetal survival and growth in mares.

9.
Exp Biol Med (Maywood) ; 248(8): 702-711, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012677

RESUMO

This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.


Assuntos
Citrulina , Placenta , Gravidez , Feminino , Suínos , Animais , Placenta/metabolismo , Citrulina/metabolismo , Suplementos Nutricionais , Poliaminas/metabolismo , Guanosina Trifosfato/metabolismo , Arginina/metabolismo
10.
Exp Biol Med (Maywood) ; 248(3): 209-216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544403

RESUMO

Dietary supplementation with l-arginine has been reported to reduce white fat mass in diet-induced obese rats and in obese humans. This study was conducted to test the hypothesis that the arginine treatment regulates glucose and fatty acid metabolism in insulin-sensitive tissues. Male Sprague-Dawley rats (4-week-old) were fed either low- or high-fat diets for 15 weeks (n = 16/diet). Thereafter, lean or obese rats were fed their respective diets and received drinking water containing either 1.51% l-arginine-HCl or 2.55% alanine (isonitrogenous control) (n = 8/treatment group). After 12 weeks of treatment, rats were euthanized and tissue samples were collected for biochemical assays. High-fat feeding increased the size of adipocytes isolated from retroperitoneal (RP) adipose tissue, while arginine treatment reduced their size. The total number of adipocytes in the adipose tissue did not differ among the four groups of rats. Glucose oxidation in extensor digitorum longus (EDL) muscle, soleus muscle, and RP adipose tissue were reduced in response to high-fat feeding. On the contrary, oleic acid oxidation in RP adipose tissue was enhanced in rats fed the high-fat diet. Arginine treatment stimulated both glucose and oleic acid oxidation in EDL and soleus muscles, while having no effect on glucose oxidation, oleic acid oxidation, or basal lipolysis per 106 adipocytes in RP adipose tissue. Collectively, these results indicate that oral supplementation with arginine to diet-induced obese rats promoted the oxidation of energy substrates in skeletal muscle, thereby reducing white fat in the body.


Assuntos
Tecido Adiposo , Ácido Oleico , Humanos , Ratos , Masculino , Animais , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ratos Sprague-Dawley , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Arginina/metabolismo , Glucose/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais
11.
J Anim Sci Biotechnol ; 13(1): 134, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476252

RESUMO

BACKGROUND: Most embryonic loss in pigs occurs before d 30 of gestation. Dietary supplementation with L-arginine (Arg) during early gestation can enhance the survival and development of conceptuses (embryo/fetus and its extra-embryonic membranes) in gilts. However, the underlying mechanisms remain largely unknown. METHODS: Between d 14 and 30 of gestation, each gilt was fed daily 2 kg of a corn- and soybean-meal based diet (12% crude protein) supplemented with either 0.4% Arg (as Arg-HCl) or an isonitrogenous amount of L-alanine (Control). There were 10 gilts per treatment group. On d 30 of gestation, gilts were fed either Arg-HCl or L-alanine 30 min before they were hysterectomized, followed by the collection of placentae, embryos, fetal membranes, and fetal fluids. Amniotic and allantoic fluids were analyzed for nitrite and nitrate [NOx; stable oxidation products of nitric oxide (NO)], polyamines, and amino acids. Placentae were analyzed for syntheses of NO and polyamines, water and amino acid transport, concentrations of amino acid-related metabolites, and the expression of angiogenic factors and aquaporins (AQPs). RESULTS: Compared to the control group, Arg supplementation increased (P < 0.05) the number of viable fetuses by 1.9 per litter, the number and diameter of placental blood vessels (+ 25.9% and + 17.0% respectively), embryonic survival (+ 18.5%), total placental weight (+ 36.5%), the total weight of viable fetuses (+ 33.5%), fetal crown-to-rump length (+ 4.7%), and total allantoic and amniotic fluid volumes (+ 44.6% and + 75.5% respectively). Compared to control gilts, Arg supplementation increased (P < 0.05) placental activities of GTP cyclohydrolase-1 (+ 33.1%) and ornithine decarboxylase (+ 29.3%); placental syntheses of NO (+ 26.2%) and polyamines (+ 28.9%); placental concentrations of NOx (+ 22.5%), tetrahydrobiopterin (+ 21.1%), polyamines (+ 20.4%), cAMP (+ 27.7%), and cGMP (+ 24.7%); total amounts of NOx (+ 61.7% to + 96.8%), polyamines (+ 60.7% to + 88.7%), amino acids (+ 39% to + 118%), glucose (+ 60.5% to + 62.6%), and fructose (+ 41.4% to + 57.0%) in fetal fluids; and the placental transport of water (+ 33.9%), Arg (+ 78.4%), glutamine (+ 89.9%), and glycine (+ 89.6%). Furthermore, Arg supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors [VEGFA120 (+ 117%), VEGFR1 (+ 445%), VEGFR2 (+ 373%), PGF (+ 197%), and GCH1 (+ 126%)] and AQPs [AQP1 (+ 280%), AQP3 (+ 137%), AQP5 (+ 172%), AQP8 (+ 165%), and AQP9 (+ 127%)]. CONCLUSION: Supplementing 0.4% Arg to a conventional diet for gilts between d 14 and d 30 of gestation enhanced placental NO and polyamine syntheses, angiogenesis, and water and amino acid transport to improve conceptus development and survival.

12.
Amino Acids ; 54(11): 1491-1504, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083345

RESUMO

Dietary supplementation with branched-chain amino acids (BCAAs) to lactating sows has been reported to enhance their milk production, but the underlying mechanisms remain largely unknown. This study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that individual BCAAs or their mixture stimulates protein synthesis and inhibit proteolysis in PMECs. Cells were cultured at 37 °C in customized Dulbecco's modified Eagle medium containing 5 mmol/L D-glucose, 1 mmol/L L-phenylalanine, L-[ring-2,4-3H]phenylalanine, 0.1 (control), 0.25, 0.5, 1, or 2 mmol/L L-leucine, L-isoleucine or L-valine or an equimolar mixture of the three BCAAs. The culture medium also contained physiological concentrations of other amino acids found in the plasma of lactating sows. Proliferation, protein synthesis, proteolysis, ß-casein production, the mechanistic target of rapamycin (mTOR) signaling, and the ubiquitin-proteasome pathway were determined for PMECs. Cell proliferation and abundances of phosphorylated mTOR, eukaryotic translation initiation factor 4E-binding protein 1, and ribosomal protein S6 kinase ß-1 proteins increased (P < 0.05), but abundances of ubiquitinated protein and 20S proteasome decreased (P < 0.05) when extracellular concentrations of L-leucine, L-isoleucine, L-valine, or an equimolar mixture of BCAAs were increased from 0.1 to 2 mmol/L. Compared with the control, 0.25, 0.5, 1 or 2 mmol/L BCAAs enhanced (P < 0.01) protein (including ß-casein) synthesis, while decreasing (P < 0.05) proteolysis in PMECs in a dose-dependent manner. Collectively, our results indicate that physiological concentrations of BCAAs regulate protein turnover in mammary epithelial cells to favor net protein synthesis through stimulating the mTOR signaling pathway and inhibiting the ubiquitin-proteasome pathway.


Assuntos
Aminoácidos de Cadeia Ramificada , Glândulas Mamárias Animais , Suínos , Feminino , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Proteólise , Leucina/farmacologia , Leucina/metabolismo , Caseínas , Isoleucina/metabolismo , Lactação , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais/metabolismo , Valina/metabolismo , Ubiquitina/metabolismo
13.
Amino Acids ; 54(12): 1569-1584, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35972553

RESUMO

The goal of this study was to elucidate the molecular mechanisms responsible for the anti-obesity effect of L-arginine supplementation in diet-induced obese rats. Male Sprague-Dawley rats were fed either a low-fat or high-fat diet for 15 weeks. Thereafter, lean or obese rats were pair-fed their same respective diets and received drinking water containing either 1.51% L-arginine-HCl or 2.55% L-alanine (isonitrogenous control) for 12 weeks. Gene and protein expression of key enzymes in the metabolism of energy substrates were determined using real-time polymerase-chain reaction and western blotting techniques. The mRNA levels of hepatic fatty acid synthase and stearoyl-CoA desaturase were reduced (P < 0.05) but those of hepatic AMP-activated protein kinase-α (AMPKα), peroxisome proliferator activator receptor γ coactivator-1α, and carnitine palmitoyltransferase I (CPT-I), as well as skeletal muscle CPT-I were increased (P < 0.05) by L-arginine treatment. The protein expression and activity of hepatic AMPKα markedly increased (P < 0.05) but the activity of hepatic acetyl-CoA carboxylase (ACC) decreased (P < 0.05) in response to dietary L-arginine supplementation. Collectively, our results indicate that liver is the major target for the action of dietary L-arginine supplementation on reducing white-fat mass in diet-induced obese rats by inhibiting fatty acid synthesis and increasing fatty acid oxidation via the AMPK-ACC signaling pathway. Additionally, increased CPT-I expression in skeletal muscle may also contribute to the enhanced oxidation of long-chain fatty acids in L-arginine-supplemented rats.


Assuntos
Proteínas Quinases Ativadas por AMP , Arginina , Ratos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/farmacologia , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Suplementos Nutricionais
14.
Amino Acids ; 54(12): 1553-1568, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35972552

RESUMO

Previous work has shown that dietary L-arginine (Arg) supplementation reduced white fat mass in obese rats. The present study was conducted with cell models to define direct effects of Arg on energy-substrate oxidation in hepatocytes, skeletal muscle cells, and adipocytes. BNL CL.2 mouse hepatocytes, C2C12 mouse myotubes, and 3T3-L1 mouse adipocytes were treated with different extracellular concentrations of Arg (0, 15, 50, 100 and 400 µM) or 400 µM Arg + 0.5 mM NG-nitro-L-arginine methyl ester (L-NAME; an NOS inhibitor) for 48 h. Increasing Arg concentrations in culture medium dose-dependently enhanced (P < 0.05) the oxidation of glucose and oleic acid to CO2 in all three cell types, lactate release from C2C12 cells, and the incorporation of oleic acid into esterified lipids in BNL CL.2 and 3T3-L1 cells. Arg at 400 µM also stimulated (P < 0.05) the phosphorylation of AMP-activated protein kinase (AMPK) in all three cell types and increased (P < 0.05) NO production in C2C12 and BNL CL.2 cells. The inhibition of NOS by L-NAME moderately reduced (P < 0.05) glucose and oleic acid oxidation, lactate release, and the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in BNL CL.2 cells, but had no effect (P > 0.05) on these variables in C2C12 or 3T3-L1 cells. Collectively, these results indicate that Arg increased AMPK activity and energy-substrate oxidation in BNL CL.2, C2C12, and 3T3-L1 cells through both NO-dependent and NO-independent mechanisms.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácido Oleico , Ratos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Ácido Oleico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Adipócitos/metabolismo , Células 3T3-L1 , Glucose/metabolismo , Hepatócitos/metabolismo , Arginina/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Músculo Esquelético/metabolismo
15.
J Anim Sci Biotechnol ; 13(1): 65, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710489

RESUMO

BACKGROUND: Under current dietary regimens, milk production by lactating sows is insufficient to sustain the maximal growth of their piglets. As precursors of glutamate and glutamine as well as substrates and activators of protein synthesis, branched-chain amino acids (BCAAs) have great potential for enhancing milk production by sows. METHODS: Thirty multiparous sows were assigned randomly into one of three groups: control (a corn- and soybean meal-based diet), the basal diet + 1.535% BCAAs; and the basal diet + 3.07% BCAAs. The ratio (g/g) among the supplemental L-isoleucine, L-leucine and L-valine was 1.00:2.56:1.23. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and their respective diets. The number of live-born piglets was standardized to 9 per sow at d 0 of lactation (the day of parturition). On d 3, 15 and 29 of lactation, body weights and milk consumption of piglets were measured, and blood samples were obtained from sows and piglets 2 h and 1 h after feeding and nursing, respectively. RESULTS: Feed intake did not differ among the three groups of sows. Concentrations of asparagine, glutamate, glutamine, citrulline, arginine, proline,  BCAAs, and many other amino acids  were greater (P < 0.05) in the plasma of BCAA-supplemented sows and their piglets than those in the control group. Compared with the control, dietary supplementation with 1.535% and 3.07% BCAAs increased (P < 0.05) concentrations of free and protein-bound BCAAs, glutamate plus glutamine, aspartate plus asparagine, and many other amino acids in milk; milk production by 14% and 21%, respectively; daily weight gains of piglets by 19% and 28%, respectively, while reducing preweaning mortality rates by 50% and 70%, respectively. CONCLUSION: Dietary supplementation with up to 3.07% BCAAs enhanced milk production by lactating sows, and the growth and survival of their piglets.

16.
Amino Acids ; 54(7): 1055-1068, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292855

RESUMO

This study was conducted to test the hypothesis that increasing dietary content of glutamate through addition of monosodium glutamate (MSG) enhances milk production by lactating sows and the growth of their offspring. Thirty multiparous sows (Landrace × Large White) were assigned randomly into one of three dietary groups: control (a corn- and soybean meal-based diet), the basal diet + 1% MSG, and the basal diet + 2% MSG. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and were fed twice daily their respective diets. The number of live-born piglets was standardized to 9 per sow at day 0 of lactation (the day of farrowing). On days 3, 15, and 29 of lactation, body weight and milk consumption of piglets were measured, and blood samples obtained from sows and piglets at 2 h and 1 h after feeding, respectively. Feed intake of sows did not differ (P > 0.05) among the three groups of sows. Concentrations of aspartate, glutamine, citrulline, arginine, tryptophan, proline, branched-chain amino acids, and glutamate were greater (P < 0.05) in the plasma of MSG-supplemented sows and their piglets than for controls. When compared with the control, dietary supplementation with 1-2% MSG increased (P < 0.05): concentrations of many free amino acids (including glutamate plus glutamine) and all protein-bound amino acids in milk; the milk intake of piglets by 14-25%; and daily weight gains of piglets by 23-44%. These results indicate that dietary supplementation with 1-2% MSG to lactating sows enhances milk production to support the growth of sow-reared piglets.


Assuntos
Lactação , Leite , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Feminino , Glutamina/metabolismo , Leite/química , Glutamato de Sódio/análise , Glutamato de Sódio/metabolismo , Glutamato de Sódio/farmacologia , Suínos
17.
Front Biosci (Landmark Ed) ; 27(3): 83, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35345315

RESUMO

BACKGROUND: Dietary supplementation with L-arginine (Arg) has been shown to increase the volume of fetal fluids in gestating swine. Aquaporins (AQPs), known as water channel proteins, are essential for embryonic growth and development. It was not known if Arg mediates water transport through AQPs in porcine conceptus trophectoderm (pTr2) cells. METHODS: pTr2 cells derived from pregnant gilts on day 12 of gestation were cultured in customized Arg-free Dulbecco's modified Eagle's Ham medium (DMEM) supplemented with either 0.00, 0.25, or 0.50 mM Arg. RESULTS: Arg treatment increased water transport and the expression of AQP3, which was abundantly expressed in pTr2 cells at both the mRNA and protein levels. Arg also increased the expression of iNOS and the synthesis of nitric oxide (NO) in pTr2 cells. The presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; an inhibitor of NO synthase) significantly attenuated the Arg-induced expression of AQP3. Furthermore, 0.50 mM Arg increased the concentrations of cAMP and the abundances of phosphorylated cAMP-dependent protein kinase A (PKA), phosphorylated PKA α/ß/γ, and phosphorylated CREB. These effects of Arg were mimicked by Forskolin (a cell-permeable activator of adenylyl cyclase), but inhibited by H-89 (an inhibitor of cAMP-dependent protein kinase). CONCLUSIONS: The results of this study demonstrate that Arg regulates AQP3 expression and promotes water transport in pTr2 cells through NO- and cAMP-dependent signaling pathways.


Assuntos
Aquaporinas , Óxido Nítrico , Animais , Aquaporina 3/genética , Aquaporinas/genética , Arginina/metabolismo , Arginina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Óxido Nítrico/metabolismo , Gravidez , Sus scrofa/metabolismo , Suínos , Água/metabolismo
18.
Biol Reprod ; 106(5): 888-899, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35134855

RESUMO

Given recent reports of expression of postnatal mineral transport regulators at the maternal-conceptus interface during the peri-implantation period, this study tested the hypothesis that progesterone (P4) and interferon tau (IFNT) regulate phosphate, calcium, and vitamin D signaling in the ovine endometrium. Mature Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on day 7 of the estrous cycle. Ewes received daily intramuscular injections of 50 mg of P4 in corn oil vehicle and 75 mg of progesterone receptor antagonist (RU486) in corn oil from days 8 to 15, and twice-daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/day) from days 11 to 15 resulting in four treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT. On day 16, ewes were hysterectomized. RU486 + P4 + CX treated ewes had lower concentrations of 25 (OH) D in plasma than P4 + CX treated ewes (P < 0.05). Endometria from ewes treated with IFNT had greater expression of FGF23 (P < 0.01), S100A9 (P < 0.05), and S100A12 (P = 0.05) mRNAs and lower expression of ADAM10 mRNA (P < 0.01) than of ewes treated with CX proteins. Expression of FGF23 mRNA was greater in endometria of ewes that received RU486 + P4 + IFNT than in ewes that received RU486 + P4 + CX (hormone × protein interaction, P < 0.05). The expression of S100G mRNA was greater in endometria of ewes that received P4 + IFNT compared to ewes that received RU486 + P4 + IFNT (P < 0.05; hormone × protein interaction, P < 0.01). These data implicate P4 and IFNT in the regulation of phosphate, calcium, and vitamin D signaling during the peri-implantation period of pregnancy and provide a platform for continued mechanistic investigations.


Assuntos
Interferon Tipo I , Progesterona , Animais , Cálcio/metabolismo , Óleo de Milho/metabolismo , Óleo de Milho/farmacologia , Endométrio/metabolismo , Feminino , Interferon Tipo I/metabolismo , Mifepristona/farmacologia , Fosfatos/metabolismo , Fosfatos/farmacologia , Gravidez , Proteínas da Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ovinos , Carneiro Doméstico , Vitamina D/farmacologia
19.
Biol Reprod ; 106(5): 865-878, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35098299

RESUMO

Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate the expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75-mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8-15, and twice daily intrauterine injections (25 µg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11-15, resulting in four treatment groups: (i) P4 + CX; (ii) P4 + IFNT; (iii) RU486 + P4 + CX; or (iv) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate the expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.


Assuntos
Agmatina , Interferon Tipo I , Agmatina/metabolismo , Agmatina/farmacologia , Animais , Óleo de Milho/metabolismo , Endométrio/metabolismo , Feminino , Interferon Tipo I/metabolismo , Mifepristona , Poliaminas/metabolismo , Gravidez , Proteínas da Gravidez , Progesterona/metabolismo , Proteínas/metabolismo , Putrescina , RNA Mensageiro/metabolismo , Ovinos , Carneiro Doméstico , Útero/metabolismo
20.
Front Biosci (Landmark Ed) ; 27(1): 33, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35090338

RESUMO

BACKGROUND: Increasing the dietary provision of L-arginine to pregnant swine beginning at Day 14 of gestation enhances embryonic survival, but the underlying mechanisms are largely unknown. OBJECTIVE: This study determined the effects of dietary supplementation with 0.8% L-arginine to gilts between Days 14 and 25 of gestation on the global expression of genes in their placentae. METHODS: Between Days 14 and 24 of gestation, gilts were fed 2 kg of a corn- and soybean meal-based diet (containing 12.0% crude protein and 0.70% Arg) supplemented with 0.8% L-arginine or without L-arginine (0.0%; with 1.64% L-alanine as the isonitrogenous control). On Day 25 of gestation, 30 min after the consumption of their top dressing containing 8 g L-arginine or 16.4 g L-alanine, gilts underwent hysterectomy to obtain placentae, which were snap-frozen in liquid nitrogen. Total RNAs were extracted from the frozen tissues and used for microarray analysis based on the 44-K Agilent porcine gene platform. RESULTS: L-Arginine supplementation affected placental expression of 575 genes, with 146 genes being up-regulated and 429 genes being down-regulated. These differentially expressed genes play important roles in nutrient metabolism, polyamine production, protein synthesis, proteolysis, angiogenesis, immune development, anti-oxidative responses, and adhesion force between the chorioallantoic membrane and the endometrial epithelium, as well as functions of insulin, transforming growth factor beta, and Notch signaling pathways. CONCLUSION: Dietary supplementation with L-arginine plays an important role in regulating placental gene expression in gilts. Our findings help to elucidate mechanisms responsible for the beneficial effect of L-arginine in improving placental growth and embryonic/fetal survival in swine.


Assuntos
Arginina , Placenta , Animais , Arginina/metabolismo , Arginina/farmacologia , Dieta , Suplementos Nutricionais , Feminino , Expressão Gênica , Análise em Microsséries , Placenta/metabolismo , Gravidez , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA