Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochemistry ; 202: 113312, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35830940

RESUMO

To explore valuable endophytic fungus from Formosan Lauraceous plants as natural medicinal products, the fungus, Diaporthe caulivora isolated from leaves of Neolitsea daibuensis, was investigated. Through a thorough investigation of the ethanolic extract of the solid fermentation of D. caulivora 09F0132, six undescribed alkyne-geranylcyclohexenetriols, caulivotrioloxins A-F, one undescribed trichopyrone, diapopyrone, two undescribed sesquiterpenes, caulibysins A-B, one compound firstly isolated from the natural source, 3-O-desmethyl phomentrioloxin, and eight known compounds have been successfully identified. The absolute configuration of caulibysin A was confirmed by single-crystal X-ray diffraction, and those of (3R,8S)-5,7-dihydroxy-3-(1-hydroxyethyl)phthalide and (3S,8S)-5,7-dihydroxy-3-(1-hydroxyethyl)phthalide were determined by circular dichroism (CD) spectra. Among the isolated compounds, caulivotrioloxin A concentration-dependently decreased the cellular melanin contents and tyrosinase activities in mouse melanoma B16-F10 cells, suggesting the anti-melanogenic potentials. The anti-melanogenic effects of caulivotrioloxin A involved the decrease in the protein expressions of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Taken together, these results suggested that the isolates from D. caulivora could be served as natural melanogenesis inhibitors for cosmeceutical applications.


Assuntos
Melaninas , Melanoma Experimental , Alcinos , Animais , Ascomicetos , Endófitos , Camundongos , Monofenol Mono-Oxigenase , Extratos Vegetais/química
2.
Food Funct ; 12(18): 8694-8703, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34355225

RESUMO

The mold Monascus has been used as a natural food coloring agent and food additive for more than 1000 years in Asian countries. In Chinese herbology, it was also used for easing digestion and antiseptic effects. Through a thorough investigation of a citrinin-free strain: M. purpureus BCRC 38110, four azaphilones, three benzenoids, one benzofuranone, one 5',6'-dihydrospiro[isochromane-1,2'-pyran]-4'(3'H)-one derivative, two steroids, and six tetralones have been successfully identified. Among them, monapyridine A (1), monatetralones A-E (2-6), and monabenzofuranone (7) were first reported. Their structures were characterized by 1D and 2D NMR, UV, IR, and HRESIMS analyses. With a series of bioactivity screening, monascuspirolide B (14) and ergosterol peroxide (16) exhibited concentration-dependent attenuation of the paclitaxel-induced neurite damage of mouse dorsal root ganglion neurons. The interleukin (IL)-1ß-induced release of inflammatory cytokines IL-8 and tumor necrosis factor (TNF)-α in human chondrosarcoma cells was inhibited by monapurpureusone (8) and monascuspirolide B (14). Altogether, M. purpureus BCRC 38110 possessed potentials as natural therapeutics against inflammatory osteoarthritis and paclitaxel-induced neurotoxicity.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Monascus/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular Tumoral , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Humanos , Interleucina-1beta/imunologia , Interleucina-8/metabolismo , Camundongos , Estrutura Molecular , Monascus/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Osteoartrite/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
3.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927887

RESUMO

In a series of anti-inflammatory screenings of lauraceous plants, the methanolic extract of the leaves of Machilus japonica var. kusanoi (Hayata) J.C. Liao showed potent inhibition on both superoxide anion generation and elastase release in human neutrophils. Bioassay-guided fractionation of the leaves of M. japonica var. kusanoi led to the isolation of twenty compounds, including six new butanolides, machinolides A-F (1-6), and fourteen known compounds (7-20). Their structures were characterized by 1D and 2D NMR, UV, IR, CD, and MS data. The absolute configuration of the new compounds were unambiguously confirmed by single-crystal X-ray diffraction analyses (1, 2, and 3) and Mosher's method (4, 5, and 6). In addition, lignans, (+)-eudesmin (11), (+)-methylpiperitol (12), (+)-pinoresinol (13), and (+)-galbelgin (16) exhibited inhibitory effects on N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation in human neutrophils with IC50 values of 8.71 ± 0.74 µM, 2.23 ± 0.92 µM, 6.81 ± 1.07 µM, and 7.15 ± 2.26 µM, respectively. The results revealed the anti-inflammatory potentials of Formosan Machilus japonica var. kusanoi.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Laurales/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Anti-Inflamatórios/uso terapêutico , Humanos , Estrutura Molecular , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Molecules ; 25(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722482

RESUMO

One new dibenzocycloheptene, validinol (1), and one butanolide firstly isolated from the natural source, validinolide (2), together with 17 known compounds were isolated from the stem of Cinnamomum validinerve. Among the isolates, lincomolide A (3), secosubamolide (7), and cinnamtannin B1 (19) exhibited potent inhibition on both superoxide anion generation (IC50 values of 2.98 ± 0.3 µM, 4.37 ± 0.38 µM, and 2.20 ± 0.3 µM, respectively) and elastase release (IC50 values of 3.96 ± 0.31 µM, 3.04 ± 0.23 µM, and 4.64 ± 0.71 µM, respectively) by human neutrophils. In addition, isophilippinolide A (6), secosubamolide (7), and cinnamtannin B1 (19) showed bacteriostatic effects against Propionibacterium acnes in in vitro study, with minimal inhibitory concentration (MIC) values at 16 µg/mL, 16 µg/mL, and 500 µg/mL, respectively. Further investigations using the in vivo ear P. acnes infection model showed that the intraperitoneal administration of the major component cinnamtannin B1 (19) reduced immune cell infiltration and pro-inflammatory cytokines TNF-α and IL-6 at the infection sites. The results demonstrated the potential of cinnamtannin B1 (19) for acne therapy. In summary, these results demonstrated the anti-inflammatory potentials of Formosan C. validinerve during bacterial infections.


Assuntos
Acne Vulgar/tratamento farmacológico , Cinnamomum/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Testes de Sensibilidade Microbiana , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Extratos Vegetais/química , Caules de Planta/química , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/patogenicidade
5.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290267

RESUMO

Hepatocellular carcinoma (HCC) is considered to be a silent killer, and was the fourth leading global cause of cancer deaths in 2018. For now, sorafenib is the only approved drug for advanced HCC treatment. The introduction of additional chemopreventive agents and/or adjuvant therapies may be helpful for the treatment of HCC. After screening 3000 methanolic extracts from the Formosan plant extract bank, Excoecaria formosana showed glycine N-methyltransferase (GNMT)-promoter-enhancing and nuclear factor erythroid 2-related factor 2 (NRF2)-suppressing activities. Further, the investigation of the whole plant of E. formosana led to the isolation of a new steroid, 7α-hydroperoxysitosterol-3-O-ß-d-(6-O-palmitoyl)glucopyranoside (1); two new coumarinolignans, excoecoumarin A (2) and excoecoumarin B (3); a new diterpene, excoeterpenol A (4); and 40 known compounds (5-44). Among them, Compounds 38 and 40-44 at a 100 µM concentration showed a 2.97 ± 0.27-, 3.17 ± 1.03-, 2.73 ± 0.23-, 2.63 ± 0.14-, 6.57 ± 0.13-, and 2.62 ± 0.05-fold increase in GNMT promoter activity, respectively. In addition, Compounds 40 and 43 could reduce NRF2 activity, a transcription factor associated with drug resistance, in Huh7 cells with relative activity of 33.1 ± 0.2% and 45.2 ± 2.5%. These results provided the basis for the utilization of Taiwan agarwood for the development of anti-HCC agents.


Assuntos
Euphorbiaceae/química , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina N-Metiltransferase/genética , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Humanos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Relação Estrutura-Atividade , Taiwan
6.
Sci Rep ; 9(1): 423, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674997

RESUMO

Dengue virus (DENV) caused millions of infections around the world annually. Co-infection with different serotypes of DENV is associated with dengue hemorrhagic shock syndrome, leading to an estimate of 50% death rate. No approved therapies are currently available for the treatment of DENV infection. Hence, novel anti-DENV agents are urgently needed for medical therapy. Here we demonstrated that a natural product (2 R,4 R)-1,2,4-trihydroxyheptadec-16-yne (THHY), extracted from avocado (Persea americana) fruit, can inhibit DENV-2 replication in a concentration-dependent manner and efficiently suppresses replication of all DENV serotypes (1-4). We further reveal that the NF-κB-mediated interferon antiviral response contributes to the inhibitory effect of THHY on DENV replication. Using a DENV-infected ICR suckling mouse model, we found that THHY treatment caused an increased survival rate among mice infected with DENV. Collectively, these findings support THHY as a potential agent to control DENV infection.


Assuntos
Antivirais , Vírus da Dengue/fisiologia , Frutas/química , Interferons/metabolismo , NF-kappa B/metabolismo , Persea/química , Extratos Vegetais , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Extratos Vegetais/farmacologia
7.
Int J Mol Sci ; 19(7)2018 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-30037134

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in the recent decades in both developed and developing countries, and is predicted to be the major etiology for liver transplantation in the next decade. Thus, pharmacological strategies to treat NAFLD are urgently needed. Natural products are considered an excellent source for drug discovery. By utilizing an image-based high-throughput screening with a library containing 3000 Taiwanese indigenous plant extracts, we discovered that the extract of Syzygium simile leaves (SSLE) has an anti-lipid droplet (LD) accumulation effect in hepatic cell lines. Analyses of the expression profile of genes involved in lipid metabolism revealed that SSLE suppressed the mRNA expression of CD36, fatty acid translocase. In agreement with this observation, we showed that SSLE inhibited CD36 protein expression and fatty acid uptake and has only limited effects on pre-formed LDs. Moreover, SSLE reduced LD accumulation and CD36 expression in enterocyte and macrophage cell lines. In conclusion, our findings suggest that SSLE could serve as a potential source for the discovery of novel therapeutic modalities for NAFLD and that the suppression of CD36 expression and fatty acid uptake could contribute to the lipid-lowering effect of SSLE.


Assuntos
Ácidos Graxos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Syzygium/química , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA