Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(12): e2200121, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182457

RESUMO

Multidrug-resistant (MDR) pathogenic bacterial infections have become a major danger to public health. Synergetic therapy through multiple approaches is more powerful than the respective one alone, but has been rarely achieved in defeating MDR bacterial infections so far. Herein, indocyanine green-functionalized Mn3 O4 nanosheets are engineered as an efficient and safe antibacterial agent with photothermal, photodynamic, and oxidase-like activities, which display powerful ability in treating MDR bacterial infections. Therein, photothermal and photodynamic activities can be triggered by a single low-powered near-infrared laser (808 nm, 0.33 W cm-2 ), resulting in the generation of localized hyperthermia (photothermal conversion efficiency, 67.5%) and singlet oxygen. Meanwhile, oxidase-like activity of this material further leads to the generation of hydroxyl radical as well as superoxide radical. Sheet-like structure with rough surfaces make them tends to adhere on bacterial surface and thus damage membrane system as well as influence bacterial metabolism. As a result, Gram-positive and Gram-negative bacteria can both be eradicated. Animal experiments further indicate that the functionalized Mn3 O4 nanosheets can effectively treat methicillin-resistant Staphylococcus aureus-infected wounds through the triple synergetic therapy. Moreover, toxicity evaluation in vitro and in vivo has proved the superior biosafety of this material, which is promising to apply in clinical anti-infective therapy.


Assuntos
Infecções Bacterianas , Farmacorresistência Bacteriana Múltipla , Hipertermia Induzida , Raios Infravermelhos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/terapia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hipertermia Induzida/métodos , Staphylococcus aureus Resistente à Meticilina , Nanoestruturas , Oxirredutases/farmacologia
2.
Nano Lett ; 21(22): 9433-9441, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752115

RESUMO

Drug-resistant pathogenic bacteria as a worldwide health threat calls for valid antimicrobial agents and tactics in clinical practice. Positively charged materials usually achieve antibacteria through binding and disrupting bacterial membranes via electrostatic interaction, however, they also usually cause hemolysis and cytotoxicity. Herein, we engineered negatively charged sulfur quantum dots (SQDs) as an efficient broad-spectrum antibiotic to kill drug-resistant bacteria in vitro and in vivo. The SQDs can destroy the bacterial membrane system and affect their metabolism due to the intrinsic antibacterial activity of elemental sulfur and catalytic generation of reactive oxygen species, which exhibit effective therapeutic effect on subcutaneously implanted infection model induced by representative pathogenic Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Plus, the negatively charged surface makes the SQDs have excellent hemocompatibility and low toxicity, which all highlight the critical prospect of the SQDs as a potent biocompatible antibacterial agent in clinical infection therapy.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Pontos Quânticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Pontos Quânticos/uso terapêutico , Enxofre/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA