Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(7): 3692-3698, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791552

RESUMO

In order to understand the resource utilization of plant biomass, five types of biomass materials were used to produce biochar to treat wastewater containing phosphorus. The phosphorus adsorption capacity of five materials was preliminarily compared through laboratory experiments, and two materials with strong phosphorus adsorption capacity were screened out. The physicochemical characteristics of the selected biochar were analyzed using scanning electron microscopy and a BET specific surface area analyzer, and the effects of different pH values on phosphorus adsorption of the biochar were investigated. Furthermore, the phosphorus adsorption characteristics of the selected biochar were analyzed via isothermal adsorption and adsorption kinetics models. The results showed that among the five biochar materials, only rice straw and corn straw biochar had the ability to adsorb phosphorus. The Langmuir isothermal adsorption curve showed that the adsorption capacity of rice straw biochar for phosphorus in wastewater was stronger than that of corn straw biochar, and the theoretical maximum adsorption capacity was as follows:rice straw biochar (9.78 mg·g-1)>corn straw biochar (0.39 mg·g-1). The specific surface area (148.30 m2·g-1) and total pore volume (0.11 cm3·g-1) of rice straw biochar were much higher than those of corn straw biochar (8.26 m2·g-1 and 0.03 cm3·g-1, respectively), and the contents of Mg, Ca, Fe, and Al were higher in rice straw biochar. The best pH for phosphorus adsorption of rice straw biochar and corn straw biochar was acidic. In different pH ranges (3.0-11.0), the phosphorus adsorption capacity of rice straw and corn straw biochar decreased with the increase in pH. These results indicated that rice straw biochar has strong phosphorus adsorption capacity and has a better application prospect in wastewater treatment.


Assuntos
Oryza , Fósforo , Adsorção , Carvão Vegetal , Águas Residuárias , Zea mays
2.
Huan Jing Ke Xue ; 42(3): 1433-1442, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742940

RESUMO

The loss of nitrogen (N) and phosphorus (P) from aquaculture has caused eutrophication of freshwater systems. Here, surface flow constructed wetland (SFCW) planted with Myriophyllum elatinoides were used to treat swine wastewater from a medium-sized hoggery in subtropical Central China. Inflow concentrations of NH4+-N, TN, TP, and COD ranged from 535.4 to 591.09, 682.09 to 766.96, 57.73 to 82.29, and 918.4 to 1940.43 mg·L-1, respectively. The mean removal efficiencies of NH4+-N, TN, TP, and COD were 97.4%, 97.1%, 91.0%, and 90.2%, respectively, and CW1 had the largest contributions of 37.3%, 38.4%, 43.3%, and 27.4%, respectively. Plant N and P uptake ranged 23.87-79.96 g·m-2 and 5.34-18.98 g·m-2, accounting for 19.1% and 20.2% of removal, respectively. Sediment N and P accumulation ranged 19.17-56.62 g·m-2 and 10.59-26.62 g·m-2, accounting for 19.8% and 61.7% of removal, respectively. Multiple linear regression showed that environmental factors explained 79.9% of the N removal and 70.1% of the P removal; DO was the main factor affecting N removal, and sediment adsorption was the key process in P removal. These results show that M. elatinoides constructed wetland can efficiently treat swine wastewater, thereby reduce the discharge of pollutants downstream.


Assuntos
Águas Residuárias , Áreas Alagadas , Animais , China , Nitrogênio/análise , Fósforo , Suínos , Eliminação de Resíduos Líquidos
3.
Huan Jing Ke Xue ; 40(7): 3118-3125, 2019 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854709

RESUMO

Decomposition of wetland plants could release pollutants, which may affect the removal efficiency and effluent quality of constructed wetlands. The experimental decomposition test of Myriophyllum aquaticum was carried out for 60 d using nylon bags, and release characteristics of nitrogen and phosphorus during the decomposition process were studied. The results showed that the decomposition rate of M. aquaticum was fastest during the first 0-4 d, with a weight loss of 30%, while the degradation rate slowed gradually during the period 4-60 d, with weight loss of 31%. The fitting first-order kinetic decomposition rate constant was 0.0142 d-1, and the calculated time to degrade 50% of dry matter was 48.8 d. The water pH decreased rapidly from 7.60 to 5.63 during 0-4 d, stabilized during 4-32 d, and finally increased to 7.03 (which was close to the control sample without M. aquaticum). The dissolved oxygen concentration decreased rapidly from 6.30 mg·L-1 to 0.61 mg·L-1 during 0-4 d, and remained in an anaerobic state. The total nitrogen concentration in the water increased rapidly to 12.7 mg·L-1 within 2 h, gradually decreased to 5.80 mg·L-1 during 2 h-32 d, and then finally increased slightly. The phosphorus concentration increased rapidly to 18.4 mg·L-1 at the beginning of the experiment, and then gradually stabilized. The main forms of nitrogen and phosphorus released by M. aquaticum were organic nitrogen (accounting for 65.7%-94.7% of total nitrogen) and inorganic phosphorus (accounting for 61%-89% of total phosphorus), respectively. The total nitrogen content of M. aquaticum increased from 24.3 mg·g-1 to 60.5 mg·g-1 with increasing degradation time; the total phosphorus decreased initially from 6.09 mg·g-1 to 2.94 mg·g-1 and then remained constant. These trends may have been related to the fixation of nitrogen by attached microorganisms. Therefore, suitable harvesting and management strategies should be adopted for wetland plants to reduce secondary pollution.


Assuntos
Nitrogênio/análise , Fósforo/análise , Saxifragales , Áreas Alagadas , Poluentes Químicos da Água/análise
4.
Huan Jing Ke Xue ; 40(4): 1957-1964, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087942

RESUMO

This research studied the response of the input and allocation of photosynthetic carbon (C) to phosphorus (P) in paddy soils. Two treatments were conducted in this experiment:no P application (P0) and the application of 80 mg·kg-1 of P (P80). The rice cultivar was the indica Zhongzao 39. The 13C-CO2 continuous labeling technique was used to identify the photosynthetic C distribution of the rice. The results showed that the application of P80 significantly increased the photosynthates allocation in the rice aboveground, but reduced their allocation in the rhizosphere soil (P<0.05). At the jointing stage, P80 application increased the photosynthetic C content of the rice by 70%, but the root dry weight decreased 31%. Compared with P0, the total C content of the aboveground rice was increased 0.31 g·pot-1 by P80. The ratio of rice roots to shoots decreased with the P80 treatment. Moreover, P80 application led to an increase in the photosynthetic microbial biomass in the non-rhizosphere soil C (13C-MBC) of 0.03 mg·kg-1, but still decreased its allocation in the rhizosphere soil. The allocation of photosynthetic C to the particulate organic matter fraction (POC) and mineral fraction (MOC) in the non-rhizosphere soil showed no significant differences between P0 and P80. Additionally, the P80 fertilization treatment significantly lowered the content of POC in the rhizosphere soil. In summary, P application increased the allocation of photosynthetic C in the soil-rice system, but reduced the accumulation of photosynthetic C in the soil. This research provided a theoretical basis and data supporting the rational application of P fertilizer, and was also of great significance as a study of the transportation and allocation of photosynthetic C and its sequestration potential response to the application of P to the rice soil.


Assuntos
Carbono/química , Fertilizantes , Oryza/fisiologia , Fósforo/química , Solo/química , Fotossíntese
5.
Huan Jing Ke Xue ; 39(8): 3901-3909, 2018 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29998700

RESUMO

The enzyme activity, which is closely related to soil material cycling (mineralization, transformation, etc.), can reflect soil quality and nutrient status. In order to explore the effect of long-term fertilization on the enzyme activity in paddy soil profile (0-40 cm), soils with organic fertilizer and inorganic fertilizer, and non-fertilized soils were selected, and the carbon and nitrogen contents, and the activities of ß-1,4-glucosidase (BG), and ß-1,4-N-acetylglucosaminidase (NAG) in 10cm depths of soil were analyzed. The results showed that the activities of BG and NAG in the soils treated with inorganic fertilizer and organic fertilizer increased by 0.73-47.87 nmol·(g·h)-1 and 1.33-128.81 nmol·(g·h)-1, and 0.19-9.72 nmol·(g·h)-1 and 0.92-57.66 nmol·(g·h)-1, respectively, compared to those for non-fertilized soil. Soil enzyme activity decreased with increasing soil depth. Soil enzyme activity in soil from 0-20 cm was significantly higher than that of soil from 20-40 cm. Soil enzyme activities were significantly affected by long term fertilization at different soil depths. RDA analysis showed that soil carbon and nitrogen contents had significant positive relationships with the activities of BG and NAG in the 0-20 cm soil profiles, however, negative relationships were observed in the 20-40 cm soil profiles. The long-term application of organic fertilizer significantly increased soil biomass and enzyme activity, both of which decreased with the increase in soil depth. Long-term fertilization could increase soil nutrient contents, microbial biomass, and extracellular enzyme activities, which has important theoretical significance for optimizing farmland fertilizer management and improving soil productivity.


Assuntos
Enzimas/análise , Fertilizantes , Microbiologia do Solo , Carbono , N-Acetilglucosaminiltransferases/análise , Nitrogênio , Oryza , Fósforo , Solo , beta-Glucosidase/análise
6.
Huan Jing Ke Xue ; 39(1): 430-437, 2018 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965711

RESUMO

Four paddy soils were collected in Ningxiang County, Hunan province. These used with different long-term fertilization regimes, including a control without fertilizer (CK), chemical fertilization with nitrogen, phosphate, and kalium (NPK), straw fertilization combined with NPK (ST), and manure fertilization combinedwith NPK (OM). Phospholipid fatty acid (PLFA) technology and MicrorespTM method were used to study the effect of long-term fertilization on soil microorganism abundance, community structure, and activity. Results showed that the abundance of bacteria, fungi, gram-negative (G-) bacteria, and gram-positive (G+) bacteria in the soil from the OM treatment was generally higher than for the other treatments; these levels were lower in the ST and NPK treatments and lowest in the CK treatment. The principal components analysis (PCA) of PLFA showed that the community structure of microorganisms in NPK, ST, and OM treatments was altered in comparison with that in CK, especially in the case of the ST and OM treatments. MicroRespTM results revealed that compared to the CK treatment (1.28 µg·h-1), soil microorganisms in the OM treatment had the highest average utilization rate of multiple carbon sources (1.81 µg·h-1), followed by ST (1.19 µg·h-1), CK (1.28 µg·h-1), and NPK (0.95 µg·h-1). Furthermore, different long-term fertilization regimes resulted in distinct carbon source preferences for the soil microorganisms and revealed a significant alteration in the microbial community. Conclusively, long-term fertilizer with straw or manure changes the microbial community and is a benefit for improving the biomass and activity of microorganism in rice paddy soils.


Assuntos
Biomassa , Fertilizantes , Oryza , Microbiologia do Solo , Agricultura , Esterco , Nitrogênio , Fósforo , Potássio , Solo
7.
Ying Yong Sheng Tai Xue Bao ; 29(3): 857-864, 2018 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29722228

RESUMO

To understand the coupled controlling of carbon (C) and phosphorus (P) on the minera-lization of soil organic carbon and amended substrates in paddy soil, we investigated the effects of P addition on the decomposition of organic carbon and its induced priming effect by using 13C isotope probing technique in microcosm. The results showed that P addition accelerated the release of CO2 but inhibited the release of CH4, leading to 53.1% reduction of total accumulated CH4 and 70.5% reduction of the 13CH4 derived from exotic glucose-13C. P addition altered the carbon distribution during the microbial turnover progress, with 3.6% of glucose-13C being transferred into the labile carbon pool, therein significantly increased potential of the mineralization rate of exogenous C. A transient negative priming effect was observed in the early stage of incubation. With time prolonging, the priming effect on CO2 emission (PECO2) generally increased and then decreased after a peak. The priming effect on CH4 emission (PECH4) kept increasing and finally fluctuated at a relative stable value until the end of the experiment (100 days). P addition increased PECO2 by 32.3% but reduced PECH4 by 93.4%. Results from the RDA and Pearson analysis showed that electric conductivity, oxidation-reduction potential and dissolved organic carbon significantly affected soil C mineralization. There were significantly negative correlations between available phosphorus (Olsen-P) and 13CH4, and between Olsen-P and PECH4. In conclusion, with the addition of exogenous organic matter, P application could reduce CH4 emissions and inhibit its priming effect, acce-lerate the mineralization of SOC, probably improve the nutrient supply, and thus enhance the avai-lability of organic C and promote C cycling in paddy soil.


Assuntos
Carbono , Fósforo/química , Solo/química , Oryza , Microbiologia do Solo
8.
Huan Jing Ke Xue ; 39(12): 5672-5679, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628414

RESUMO

A rice pot experiment was conducted to investigate the effect of phosphorus addition on the abundance of autotrophic CO2-fixation microorganisms using phosphorus-limited paddy soil from the Changsha Observation and Research Station for the Agricultural Environment. Rice seedlings were transplanted in the paddy soil with or without phosphorus addition, corresponding to P-treated-pot (P) or control pot (CK), respectively. Rhizosphere soils were collected from the P and CK treatments during the tillering and shooting stages. The physical and chemical soil properties were measured and the abundance of autotrophic CO2-fixation microorganisms was quantified with a real-time PCR technique based on four functional genes (cbbL, cbbM, accA, and aclB) involved in three CO2-fixation pathways (CBB cycle, rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate cycle). The results show that phosphorus addition improves the concentrations of DOC and Olsen-P and the pH value, whereas negative effects on the MBC and NH4+-N concentrations are revealed during the tillering stage. The effect of phosphorus addition on the NO3--N concentration in the tillering and shooting stages differs. Phosphorus addition significantly increases the abundances of the cbbL, cbbM, accA, and aclB genes, which are 156%, 99%, 110%, and 193% higher than those of the CK treatment in the tillering stage. However, this positive effect is not notable for the cbbL, accA, and aclB genes during the shooting stage. Redundancy analysis (RDA) shows that Olsen-P is the environmental factor that most significantly affects the abundance of autotrophic CO2-fixation microorganisms.


Assuntos
Dióxido de Carbono/química , Fósforo/química , Microbiologia do Solo , Solo/química , Bactérias , Fertilizantes , Oryza , Rizosfera , Ribulose-Bifosfato Carboxilase
9.
Huan Jing Ke Xue ; 39(12): 5708-5716, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628418

RESUMO

The variation characteristics of ecological stoichiometric ratios can reflect the nature of plant adaptation to environmental changes. The C, N, and P contetns, and their stoichiometric ratios in different organs of rice were studied using a CO2 continuous labeling system, by simulating the increase of atmospheric CO2 concentration (800×10-6). The results showed that CO2 doubling promoted the growth of rice organs and increased the root/shoot ratio. CO2 doubling reduced the shoot TN content in different growth periods, increased the C/N ratio in the rice root, shoot, and grain, decreased the N use efficiency, and improved the P use efficiency. Multiple comparison and Venn diagram analyses showed that CO2 concentration only has a significant impact on the TN content in the rice shoot; it contributed little to the variation in rice nutrient content and their stoichiometric ratios, indicating that CO2 doubling had no effect on these. Under the condition of elevated atmospheric CO2 concentrations, the C, N, and P contents and their stoichiometirc ratios, in rice organs had good homeostasis, and the stoichiometric change during growth periods was consistent with "the Growth Rate Theory". In farmland management, appropriate nitrogen fertilizers can alleviate the nutrient balance pressure caused by the increase in CO2 concentration.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Fósforo/análise , Oryza/química
10.
Huan Jing Ke Xue ; 38(4): 1606-1612, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965165

RESUMO

A suitable fractionation method of phosphorus (P) is a key to effective assessment of soil P componential features. Here a new biologically-based P (BBP) method was used to evaluate the P fractions in the upland and paddy soils across large-scale area in China. The soil P was divided into four components:① soluble or rhizosphere-intercepted (CaCl2-P), ② organic acid activated and inorganic weakly bound (Citrate-P), ③ enzyme mineralization of organic P (Enzyme-P), ④ potential activation of inorganic P (HCl-P). Then, the relationships between biologically-based P fractions and standard Olsen-P were investigated, and driving factors of P fractions were identified. The results showed that P content was in order of HCl-P>Citrate-P>Enzyme-P>CaCl2-P. All P components of upland soil displayed higher levels than those of paddy soil. Moreover, the P components were highly positively correlated with the Olsen-P, suggesting that each P component contributed to soil P availability. However, it was found that Olsen-P was most highly correlated with CaCl2-P and Enzyme-P (R2=0.359; R2=0.386) in upland soil, while Olsen-P was most highly with Citrate-P (R2=0.788) in paddy soil. This result indicated that available P of upland soil was mainly from organic P mineralization and soluble P, and available P in paddy soil was mainly from inorganic P activation. Redundancy analysis (RDA) showed that the P components were mainly affected by soil pH and silt content, which suggested that it could enhance the P availability via regulating soil pH in the agricultural activities.


Assuntos
Fósforo/química , Solo/química , Agricultura , China , Fazendas , Fertilizantes , Oryza
11.
Huan Jing Ke Xue ; 38(9): 3731-3737, 2017 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965253

RESUMO

Ammonium nitrogen (NH4+-N) at high concentrations is toxic to plants. In order to explore the NH4+-N tolerance of Myriophyllum aquaticum (M. aquaticum) and its ability of nitrogen (N) and phosphorus (P) uptake, this study used a nutrient solution with three NH4+-N levels (70, 210, 420 mg·L-1) to incubate M. aquaticum for 21 d. The characteristics of plant physiology and N and P uptake of M. aquaticum were measured. At NH4+-N of 70 mg·L-1, M. aquaticum grew healthily, and shoot height and biomass linearly increased with the increase incubation time. Relative shoot height and biomass of M. aquaticum were 40.56 cm and 17.82 g·hole-1 on day 21, respectively. Compared to the control with 70 mg·L-1 ammonium, malondialdehyde (MDA) content of M. aquaticum was significantly increased; chlorophyll and soluble sugar contents were also high at NH4+-N of 210 mg·L-1. M. aquaticum suffered from the NH4+-N stress. However, the stress of 210 mg·L-1 NH4+-N did not affect its normal growth and there was no significant difference in the relative growth rate of the shoot height and biomass compared with the control. At NH4+-N of 420 mg·L-1, MDA contents of M. aquaticum doubled and the shoot height and biomass growth rate were only 27.4% and 17.9% of those for 70 mg·L-1 NH4+-N, indicating that M. aquaticum was subjected to serious stress that caused unhealthy growth or even death. At three NH4+-N levels, the ranges of N and P content of M. aquaticum were 30.7-53.4 mg·g-1 and 3.8-7.7 mg·g-1, respectively, which indicated that M. aquaticum had a high uptake capacity of N and P. M. aquaticum is an ideal wetland plant that has a good application prospect for constructed wetlands in biological treatment of high-ammonia wastewater.


Assuntos
Compostos de Amônio/química , Nitrogênio/metabolismo , Fósforo/metabolismo , Saxifragales/metabolismo , Saxifragales/crescimento & desenvolvimento , Águas Residuárias , Áreas Alagadas
12.
Ying Yong Sheng Tai Xue Bao ; 26(9): 2721-7, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26785554

RESUMO

This article analyzed the inputs of organic matter and chemical fertilizer in the cropland of South Central China, i.e., Hunan, Hubei, Guangdong and Guangxi, and then calculated the budgets of nitrogen (N), phosphorus (P) and potassium (K), based on the data from field investigations and peasant household surveys in the four provinces. The results showed that total amounts of organic matter inputs in the four provinces was ranked as follow: 8993 kg · hm(-2) in Guangxi, 6390 kg · hm(-2) in Hunan, 5012 kg · hm(-2) in Hubei, 4630 kg · hm(-2) in Guangdong, and average NPK inputs in the four provinces were ranked as follow: 777.5 kg · hm(-2) in Guangxi, 501.6 kg · hm(-2) in Hunan, 486.4 kg · hm(-2) in Hubei, 340.4 kg · hm(-2) in Guangdong. The N and P input surpluses were greatest in Guangxi (67.2% and 99.0% as for N and P, respectively) , followed by Hunan (33.2% and 50.8%), Hubei (11.8% and 11.0%), and Guangdong (7.8% and 30.0%). However, K input was deficient in Hunan, Hubei, and Guangdong (6.6%, 18.7% and 12.4%), but surplus in Guangxi (19.5%).


Assuntos
Agricultura/métodos , Fertilizantes , Solo/química , China , Nitrogênio/química , Fósforo/química , Potássio/química
13.
Huan Jing Ke Xue ; 36(12): 4516-22, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-27011988

RESUMO

In order to effectively intercept and remove nitrogen (N) and phosphorus (P) from agricultural water, Canna glauca, Sparganium stoloniferum, Juncus effusus, Hydrocotyle vulgaris, and Myriophyllum elatinoides were planted in an agricultural drainage ditch. The temporal and spatial variations of the dissolved N and P concentrations were monitored during the whole experimental period. In addition, the contents of N and P in sediments and plants were compared among different plant plots. The results showed the effluent TN and TP concentrations in the vegetated drainage ditch were lower than the surface water environmental quality standards for class IV and class II . The average removal rates of TN and TP in water were 64.3% and 69.7%, respectively. The average sediment interceptions in 2010 and 2011 reached 40,400 kg, containing 52.4 kg of N and 21.4 kg of P. The amounts of sediment N and P in five plant plots exhibited the descending order: Canna glauca > Hydrocotyle vulgaris > Sparganium stoloniferum > Myriophyllum elatinoides > Juncus effuses. The accumulated N and P amounts assimilated by five kinds of aquatic plants reached 7.9 kg · a⁻¹ and 1.4 kg · a⁻¹, respectively. Compared with other plants, Canna glauca and Myriophyllu elatinoides had the highest ratios of above-ground and below-ground tissues, and the strongest absorption capacity of N and P was also observed in these two plants. Therefore, the vegetated drainage ditch has good interception effect on N and P pollutants. Furthermore, Canna glauca and Myriophyllum elatinoides can be considered as the optimal plants for N and P uptake.


Assuntos
Agricultura , Nitrogênio/análise , Fósforo/análise , Plantas , Poluentes Químicos da Água/análise , Drenagem Sanitária , Meio Ambiente , Água
14.
Mol Ecol ; 24(1): 136-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25410123

RESUMO

The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions.


Assuntos
Fertilizantes , Fósforo/química , Microbiologia do Solo , Solo/química , Bactérias/classificação , Biomassa , Ciclo do Carbono , Ecossistema , Nitrogênio/química , Ciclo do Nitrogênio , Oryza/crescimento & desenvolvimento , Filogenia , Potássio/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Huan Jing Ke Xue ; 35(1): 150-6, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24720198

RESUMO

The research selected the Tuojia catchment and Jianshan catchment in Changsha County, Hunan Province, to comparatively study the effects of rice agriculture on the nitrogen and phosphorus concentrations and exports in streams in the typical agricultural catchments of the hilly red soil earth region. The monitoring of 16 months suggested that, there was a moderate stream nutrient pollution in both Tuojia and Jianshan catchments, especially for nitrogen pollution. Comparing the two catchments, the nitrogen and phosphorus concentrations were higher and the water quality was worse in the Tuojia catchment than that in the Jianshan catchment. From the nutrient composition of view, ammonia nitrogen was the main species of total nitrogen in the Tuojia catchment (accounting for 58.5% of total nitrogen), while it was nitrate nitrogen in the Jianshan catchment (accounting for 76. 1% of total nitrogen). The proportion of dissolved phosphorus in total phosphorus was 47. 1% in the Tuojia catchment, higher than the proportion of 37.5% in the Jianshan catchment. From temporal variations of nutrient dynamics of view, concentrations of all forms of nitrogen were higher during January to February and in July, respectively, and total phosphorus and dissolved phosphorus were higher during May to June and during October to December. Since the stream discharge in the catchments concentrated during the rice growing period from April to October, the higher nutrient concentrations during the period suggested potential risks of nitrogen and phosphorus losses. The total nitrogen mass flux was 1.67 kg x (hm2 x month)(-1) and TP was 0.06 kg x (hm2 x month)(-1) in the Tuojia catchment, which were greater than the 0.44 kg x (hm2 x month)(-1) and 0.02 kg x (hm2 x month)(-1) in the Jianshan catchment. Given the similar climate, geomorphology, soil type and cultivation patterns but the different area proportion of rice agriculture between two catchments, results suggested that, under the traditional crop management in hilly red soil earth region of central subtropics, the higher area proportion of rice agriculture has the potential to degrade stream aquatic environment.


Assuntos
Agricultura , Monitoramento Ambiental , Nitrogênio/análise , Oryza , Fósforo/análise , Rios/química , China , Nitratos/análise , Solo/química
16.
Huan Jing Ke Xue ; 34(3): 1101-6, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23745420

RESUMO

Sediments properties and phosphorus (P) adsorption capacities were compared among the samples of 0-5 cm and 5-15 cm layers from the ecological ditch vegetated with Cenetlla asiatica, Sparganium stoloniferum and a natural agricultural ditch with weeds. The results showed the 0-5 cm sediment vegetated with Cenetlla asiatica had higher concentrations of oxalate extracted Fe, Al and P than those vegetated with Sparganium stoloniferum or weeds. The parameters calculated from the Freudlich and Langmiur isotherms showed the equilibrium phosphate concentration (EPC0) ranged from 0.009 to 0.031 mg x L(-1). Cenetlla asiatica in the 0-5 cm layer had the maximum values of 352.2 L x kg(-1) and 562.7 mg x kg(-1) for Freundlich adsorption constant (K(f)) and Langmuir sorption maximum (S(max)), respectively, which proved it had the highest P adsorption capacity. The regression analysis showed P sorption parameters had significant relationship to oxalate-extracted Fe, clay content and DPS (P < 0.05). It was thus clear that aquatic plants influenced sediment properties and P adsorption capacity, and the practice of growing proper plants in ecological ditch could reduce the risk of P loss in non-point source pollution.


Assuntos
Sedimentos Geológicos/química , Fósforo/isolamento & purificação , Plantas/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Poluentes da Água/análise , Adsorção , Biodegradação Ambiental , China , Ecossistema , Nitrogênio/análise , Fósforo/análise , Desenvolvimento Vegetal , Poluentes Químicos da Água/análise
17.
Ying Yong Sheng Tai Xue Bao ; 22(10): 2615-21, 2011 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-22263466

RESUMO

Based on a 20-year field site-specific fertilization experiment in Taoyuan Experimental Station of Agriculture Ecosystems under Chinese Ecosystem Research Network (CERN), this paper studied the effects of different fertilization modes of N, P, and K on the accumulation and allocation of C and N in rice plant. The fertilization mode N-only showed the highest C and N contents (433 g kg(-1) and 18.9 g kg(-1), respectively) in rice grain, whereas the modes balanced fertilization of chemical N, P and K (NPK) and its combination with organic mature recycling (NPKC) showed the highest storage of C and N in rice plant. In treatments NPK and NPKC, the C storage in rice grain and in stem and leaf was 1960 kg hm(-2) and 2015 kg hm(-2), and 2002 kg hm(-2) and 2048 kg hm(-2), and the N storage in rice grain was 80.5 kg hm(-2) and 80.6 kg hm(-2), respectively. Treatment NPK had the highest N storage (59.3 kg hm(-2)) in stem and leaf. Balanced fertilization of chemical N, P, and K combined with organic manure recycling increased the accumulation of C and N in rice plant significantly. Comparing with applying N only, balanced fertilization of chemical N, P, and K was more favorable to the accumulation and allocation of C and N in rice plant during its growth period.


Assuntos
Carbono/metabolismo , Fertilizantes/classificação , Nitrogênio/metabolismo , Oryza/metabolismo , Grão Comestível/metabolismo , Nitrogênio/química , Oryza/crescimento & desenvolvimento , Fósforo/química , Potássio/química
18.
Ying Yong Sheng Tai Xue Bao ; 22(11): 2919-29, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22303670

RESUMO

Soil samples were collected from three vegetable fields under different years of cultivation in Changsha suburbs of Hunan Province, South-central China to study the accumulation characteristics, risks, and sources of soil available nitrogen and phosphorus and heavy metals in the fields. With the increasing year of vegetable cultivation, the soil NO3(-)-N, Olsen-P, and heavy metals contents in the fields increased significantly. The average contents of soil NO3(-)-N, Olsen-P, and Cd in the vegetable fields having been cultivated for 1-2 years in Ningxiang County, 10-15 years in Changsha County, and 30 years in Kaifu District were 21.1, 31.9 and 0.33 mg x kg(-1), 42.0, 146.9 and 0.52 mg x kg(-1), and 49.5, 219.9 and 1.40 mg x kg(-1), respectively. The cumulative index (CI) of soil heavy metals generally followed the sequence of Cd >> Cu > Pb > Ni > Zn. Principal component analysis and cluster analysis showed that compared with soil NH4 OAc-extracted potassium, pH, organic matter and NH4(+)-N, that were dominated by natural factors, the soil Olsen-P and NO3(-)-N had the similar accumulation characteristics with the soil heavy metals, being mainly controlled by fertilization. It was considered that the soil environment and health quality of the vegetable fields in Changsha suburbs were not optimistic. The longer the cultivation year of vegetables, the more the soil NO3(-)-N, Olsen-P, and heavy metals accumulated in the fields. The accumulation of these elements in the fields could be primarily due to the long-term fertilization.


Assuntos
Metais Pesados/análise , Nitrogênio/análise , Fósforo/análise , Solo/análise , Verduras/crescimento & desenvolvimento , China , Monitoramento Ambiental , Fertilizantes , Fatores de Tempo
19.
Ying Yong Sheng Tai Xue Bao ; 21(7): 1759-65, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20879534

RESUMO

In order to further understand the mechanisms of microbial immobilization of phosphorous (P) in highly weathered red soil with organic amendment, an incubation test was conducted to investigate the roles of microbial functional groups in the transformation of P in 0.2-2 mm soil aggregates. Throughout the 90-day incubation period, amendment with rice straw induced a substantial increase in the amounts of microbial biomass C and P, Olsen-P, and organic P in the aggregates. Comparing with rice straw amendment alone, the amendment with rice straw plus fungal inhibitor actidione decreased the amount of microbial biomass C in the aggregates by 10.5%-31.8% in the first 30 days. Such a decrement was significantly larger than that (6.8%-11.6%) in the treatment amended with rice straw plus bacterial inhibitors tetracycline and streptomycin sulphate (P<0.01). After the first 30 days, the microbial biomass C remained constant. In the first 20 days, the amount of microbial biomass P in the aggregates was 10.0%-28.8% higher in the treatment amended with bacterial inhibitors than in the treatment amended with fungal inhibitor (P<0.01). All the results suggested that that both the fungal and the bacterial groups were involved in the microbial immobilization of P in the soil aggregates, and the fungal group played a relatively larger role.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/metabolismo , Fósforo/metabolismo , Caules de Planta/química , Microbiologia do Solo , Agricultura/métodos , Bactérias/efeitos dos fármacos , Biotransformação , Fertilizantes , Fungos/efeitos dos fármacos , Fungos/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Fósforo/química , Eliminação de Resíduos/métodos , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA