Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(9): 3590-3598, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34862638

RESUMO

BACKGROUND: Foliar application of highly concentrated ZnSO4 fertilizer improves Zn biofortification in wheat grains. However, excess ZnSO4 ·7H2 O concentration (≥5 g kg-1 , w v-1 ) has been associated with leaf burn and yield loss, necessitating Zn sources with a high threshold concentration. The aim of this study, based on a 2 year field experiment conducted on wheat cultivated in acidic and alkaline soil, was to identify a suitable Zn formulation with a high Zn concentration or efficient adjuvant to achieve optimal Zn biofortification levels without compromising agronomic performance. RESULTS: There was a continued increase in the Zn concentration in wheat grains and a decrease in grain yield with an increase in the concentration of the Zn foliar sprays in both soil types examined. Wheats treated with chelated Zn foliar sprays - Zn glycine chelate (ZnGly) and Zn-ethylenediaminetetraacetic acid (ZnEDTA) - had less foliar injury than those treated with unchelated Zn fertilizers. Furthermore, irrespective of wheat cultivars and soil types, ZnEDTA applied to wheat at a concentration of 10 g kg-1 achieved the highest grain Zn concentration without negatively affecting the wheat performance. Adjuvant type and concentration caused no significant variation in grain Zn concentration. CONCLUSION: Overall, without foliar burn, wheat treated with 10 g kg-1 ZnEDTA foliar spray had the best performance with regard to grain Zn concentration and grain yield, which could have considerable implications for Zn biofortification of wheat grain. © 2021 Society of Chemical Industry.


Assuntos
Biofortificação , Triticum , Grão Comestível/química , Fertilizantes/análise , Solo , Zinco/análise
2.
Sci Total Environ ; 778: 146328, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714837

RESUMO

Tea polyphenols are the most widely distributed class of secondary metabolites (Camellia sinensis) and account for a considerable proportion of the pruning residues of tea. A large amount of tea polyphenols have fallen down over soil with prunning residues every year. However, the effect of tea polyphenols on soil nitrogen cycle, especially the denitrification process and its related microbial communities, remains unclear. Epigallocatechin gallate (EGCG), the most abundant component of tea polyphenols, was selected to simulate the effects of tea polyphenols on soil nitrification, denitrification, related functional genes and microbial community. The results indicated that addition of EGCG can significantly (p < 0.05) inhibit soil nitrification. Copy numbers of bacterial and archaeal ammonia monooxygenase genes (amoA) decreased as EGCG concentration increased. Further, the ammonia oxidisers exhibited a significantly (p < 0.05) greater niche differentiation under the effect of EGCG compared with the control treatment (no EGCG addition). However, the inhibition effect of EGCG over soil denitrification was most significant at 34 and 36 day of incubation period, and such inhibitory effect was more apparent on nitrification compared with denitrification. EGCG addition increased the diversity of bacterial community. The composition of bacterial community was significantly altered and community variation was primary explained by EGCG, NH4+-N, NO3--N, soil organic carbon contents and potential denitrification rates. EGCG addition significantly increased relative abundance of Proteobacteria and Bacteroidetes phyla whereas decreased Actinobacteria. Overall, tea polyphenols can inhibit soil nitrification to a larger extent than denitrification by reducing the abundance of microorganisms carrying the related functional genes. Our results can serve as important basis of reducing the nitrogen pollution risk in tea orchards and could be considered as a powerful natural nitrification inhibitor to reduce the environmental risks caused by unreasonable nitrogen fertiliser adaptation.


Assuntos
Nitrificação , Solo , Archaea , Carbono , Desnitrificação , Nitrogênio , Polifenóis , Microbiologia do Solo , Chá
3.
Sci Rep ; 10(1): 1745, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019970

RESUMO

Fertilisation datasets collected from field experiments (n = 21) in tea-producing areas from 2016 to 2018 were used to build a quantitative evaluation of the fertility of tropical soils (QUEFTS) model to estimate nutrient uptake of tea plants, and to investigate relationships between tea yield and nutrient accumulation. The production of 1000 kg spring tea (based on one bud with two young expanding leaves) required 12.2 kg nitrogen (N), 1.2 kg phosphorus (P), and 3.9 kg potassium (K), and the corresponding internal efficiencies (IEs) for N, P, and K were 82.0, 833.3, and 256.4 kg kg-1. To produce 1000 kg summer tea, 9.1 kg N, 0.8 kg P, and 3.1 kg K were required, and the corresponding IEs for N, P, and K were 109.9, 1250.0, and 322.6 kg kg-1. For autumn tea, 8.8 kg N, 1.0 kg P, and 3.2 kg K were required to produce 1000 kg tea, and the corresponding IEs for N, P, and K were 113.6, 1000.0, and 312.5 kg kg-1. Field validation experiments performed in 2019 suggested that the QUEFTS model can appropriately estimate nutrient uptake of tea plants at a certain yield and contribute to developing a fertiliser recommendation strategy for tea production.


Assuntos
Camellia sinensis/química , Nutrientes/química , Chá/química , China , Fertilidade , Fertilizantes , Nitrogênio/química , Necessidades Nutricionais , Fósforo/química , Folhas de Planta/química , Potássio , Estações do Ano , Solo/química
4.
BMC Plant Biol ; 19(1): 108, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894123

RESUMO

BACKGROUND: Nutrition with ammonium (NH4+) can enhance the drought tolerance of rice seedlings in comparison to nutrition with nitrate (NO3-). However, there are still no detailed studies investigating the response of nitric oxide (NO) to the different nitrogen nutrition and water regimes. To study the intrinsic mechanism underpinning this relationship, the time-dependent production of NO and its protective role in the antioxidant defense system of NH4+- or NO3--supplied rice seedlings were studied under water stress. RESULTS: An early NO burst was induced by 3 h of water stress in the roots of seedlings subjected to NH4+ treatment, but this phenomenon was not observed under NO3- treatment. Root oxidative damage induced by water stress was significantly higher for treatment with NO3- than with NH4+ due to reactive oxygen species (ROS) accumulation in the former. Inducing NO production by applying the NO donor 3 h after NO3- treatment alleviated the oxidative damage, while inhibiting the early NO burst by applying the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) increased root oxidative damage in NH4+ treatment. Application of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester(L-NAME) completely suppressed NO synthesis in roots 3 h after NH4+ treatment and aggravated water stress-induced oxidative damage. Therefore, the aggravation of oxidative damage by L-NAME might have resulted from changes in the NOS-mediated early NO burst. Water stress also increased the activity of root antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase). These were further induced by the NO donor but repressed by the NO scavenger and NOS inhibitor in NH4+-treated roots. CONCLUSION: These findings demonstrate that the NOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by water stress by enhancing the antioxidant defenses in roots supplemented with NH4+.


Assuntos
Compostos de Amônio/farmacologia , Desidratação , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Oryza/fisiologia , Antioxidantes/metabolismo , Arginina/metabolismo , Citrulina/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroprussiato/farmacologia , Oryza/efeitos dos fármacos , Oxirredução , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
5.
Bioresour Technol ; 139: 190-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23660382

RESUMO

To understand the potential of using swine lagoon wastewater to cultivate Botryococcus braunii for biofuel production, growth characteristics of B. braunii 765 cultivated in aerated swine lagoon wastewater (ASLW) without sterilization and pH adjustment were investigated. The results showed that the alga strain could maintain competitive advantage over the 26-day cultivation. The highest dry biomass of alga grown in ASLW was 0.94 mg L(-1) at day 24, which was 1.73 times that grown in BG11 medium, an artificial medium normally used for B. braunii cultivation. And the algal hydrocarbon content was 23.8%, being more than twice that in BG11 medium. Additionally, after the 26-day cultivation, about 40.8% of TN and 93.3% of TP in ASLW were removed, indicating also good environmental benefits of algal bioremediation.


Assuntos
Técnicas de Cultura de Células/métodos , Clorófitas/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Águas Residuárias , Aerobiose/efeitos dos fármacos , Amônia/análise , Animais , Análise da Demanda Biológica de Oxigênio , Clorofila/metabolismo , Clorófitas/citologia , Hidrocarbonetos/metabolismo , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Sus scrofa , beta Caroteno/metabolismo
6.
J Environ Sci (China) ; 19(7): 841-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966872

RESUMO

In this study, soil column was used to study the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate (NO3(-)-N) and potassium (K) leaching in the sandy loam soil and clay loam soil. The results showed that DMPP with ammonium sulphate nitrate (ASN) ((NH4)2SO4 and NH4NO3) or urea could reduce NO3(-)-N leaching significantly, whereas ammonium (NH4(+)-N) leaching increased slightly. In case of total N (NO3(-)-N+NH4(+)-N), losses by leaching during the experimental period (40 d) were 37.93 mg (urea), 31.61 mg (urea+DMPP), 108.10 mg (ASN), 60.70 mg (ASN+DMPP) in the sandy loam soil, and 30.54 mg (urea), 21.05 mg (urea+DMPP), 37.86 mg (ASN), 31.09 mg (ASN+DMPP) in the clay loam soil, respectively. DMPP-amended soil led to the maintenance of relatively high levels of NH4(+)-N and low levels of NO3(-)-N in soil, and nitrification was slower. DMPP supplementation also resulted in less potassium leached, but the difference was not significant except the treatment of ASN and ASN+DMPP in the sandy loam soil. Above results indicate that DMPP is a good nitrification inhibitor, the efficiency of DMPP seems better in the sandy loam soil than in the clay loam soil and lasts longer.


Assuntos
Nitratos/química , Potássio/química , Pirazóis/química , Compostos de Amônio Quaternário/química , Poluentes do Solo/química , Poluição da Água/prevenção & controle , Sulfato de Amônio/química , Fertilizantes , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA