Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 225: 112792, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544022

RESUMO

Cypermethrin (CYP), an extensively-used broad-spectrum pyrethroid pesticide, is regarded as a potential environmental endocrine disruptor with the anti-androgenic characteristic. To explore underlying roles of non-coding RNAs and the Jak/Stat pathway in CYP-mediated testosterone biosynthesis suppression, SD rats and Leydig cells were employed in this work. Results displayed that ß-CYP decreased plasma testosterone levels and led to abnormal alterations of testicular histomorphology and ultrastructures. LncRNA XIST and miR-142-5p were co-localized in the cytoplasm of Leydig cells, but the expression of XIST was inhibited by ß-CYP while that of miR-142-5p was induced. Then overexpressed miR-142-5p dampened the Jak1/Stat1 pathway by directly targeting Jak1. Transcription factors NFκB and YY1 impeded by ß-CYP were positively regulated by the Jak1/Stat1 pathway. Bidirectional Co-IP and ChIP assays demonstrated that NFκB interacted with and modulated YY1 by directly binding to the promoter region of YY1. ChIP, qPCR, and YY1 knockdown/overexpression assays indicated that YY1 acted as a transcriptional activator to directly modulate steroidogenic StAR and 3ß-HSD in Leydig cells. Taken together, miR-142-5p sponged by lncRNA XIST directly targets the Jak1/Stat1 pathway, which regulates steroidogenic StAR and 3ß-HSD via NFκB and YY1, and ultimately dampens testosterone production in Leydig cells.


Assuntos
Células Intersticiais do Testículo , Piretrinas , Animais , Masculino , Piretrinas/toxicidade , Ratos , Ratos Sprague-Dawley , Testosterona , Fator de Transcrição YY1/genética
2.
Sci Rep ; 7(1): 15526, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138451

RESUMO

Carbon nanotubes (CNTs), α-Fe2O3 nanoparticles (nano Fe2O3) and MgO nanoparticles (nano MgO) were evaluated for the effects on algae growth and lipid production. Nano Fe2O3 promoted cell growth in the range of 0-20 mg·L-1. CNTs, nano Fe2O3 and nano MgO inhibited cell growth of Scenedesmus obliquus at 10, 40 and 0.8 mg·L-1 respectively. Neutral lipid and total lipid content increased with the increasing concentration of all tested nanoparticles. The maximum lipid productivity of cultures exposed to CNTs, nano Fe2O3 and nano MgO was observed at 5 mg·L-1, 5 mg·L-1 and 40 mg·L-1, with the improvement by 8.9%, 39.6% and 18.5%. High dose exposure to nanoparticles limited increase in lipid productivity, possibly due to the repression on cell growth caused by nanoparticles-catalyzed reactive oxygen species (ROS) generation, finally leading to reduction in biomass and lipid production. Reduced accumulation of fatty acids of C18:3n3, C18:3n6 and C20:2 was observed in cells exposed to nanoparticles.


Assuntos
Compostos Férricos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Compostos de Manganês/farmacologia , Nanopartículas , Óxidos/farmacologia , Scenedesmus/efeitos dos fármacos , Lipídeos , Nanotubos de Carbono , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA