Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 12: e17138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529308

RESUMO

Background: The continuous establishment of Chinese fir (Cunninghamia lanceolata) plantations across multiple generations has led to the limited impact of soil phosphorus (P) on tree growth. This challenge poses a significant obstacle in maintaining the sustainable management of Chinese fir. Methods: To investigate the effects of Arbuscular mycorrhizal fungi (AMF) on the growth and physiological characteristics of Chinese fir under different P supply treatments. We conducted an indoor pot simulation experiment in the greenhouse of the Forestry College of Fujian Agriculture and Forestry University with one-and-half-year-old seedlings of Chinese fir from March 2019 to June 2019, with the two P level treatment groups included a normal P supply treatment (1.0 mmol L-1 KH2PO4, P1) and a no P supply treatment (0 mmol L-1 KH2PO4, P0). P0 and P1 were inoculated with Funneliformis mosseae (F.m) or Rhizophagus intraradices (R.i) or not inoculated with AMF treatment. The AMF colonization rate in the root system, seedling height (SH), root collar diameter (RCD) growth, chlorophyll (Chl) photosynthetic characteristics, enzyme activities, and endogenous hormone contents of Chinese fir were estimated. Results: The results showed that the colonization rate of F.m in the roots of Chinese fir seedlings was the highest at P0, up to 85.14%, which was 1.66 times that of P1. Under P0 and P1 treatment, root inoculation with either F.m or R.i promoted SH growth, the SH of R.i treatment was 1.38 times and 1.05 times that of F.m treatment, respectively. In the P1 treatment, root inoculation with either F.m or R.i inhibited RCD growth. R.i inhibited RCD growth more aggressively than F.m. In the P0 treatment, root inoculation with F.m and R.i reduced the inhibitory effect of phosphorus deficiency on RCD. At this time, there was no significant difference in RCD between F.m, R.i and CK treatments (p < 0.05). AMF inoculation increased Fm, Fv, Fv/Fm, and Fv/Fo during the chlorophyll fluorescence response in the tested Chinese fir seedlings. Under the two phosphorus supply levels, the trend of Fv and Fm of Chinese fir seedlings in different treatment groups was F.m > R.i > CK. Under P0 treatment, The values of Fv were 235.86, 221.86 and 147.71, respectively. The values of Fm were 287.57, 275.71 and 201.57, respectively. It increased the antioxidant enzyme activity and reduced the leaf's malondialdehyde (MDA) content to a certain extent. Conclusion: It is concluded that AMF can enhance the photosynthetic capacity of the host, regulate the distribution of endogenous hormones in plants, and promote plant growth by increasing the activity of antioxidant enzymes. When the P supply is insufficient, AMF is more helpful to plants, and R.i is more effective than F.m in alleviating P starvation stress in Chinese fir.


Assuntos
Cunninghamia , Fungos , Micorrizas , Humanos , Lactente , Plântula , Simbiose , Antioxidantes/farmacologia , Clorofila/farmacologia , Fósforo/farmacologia
2.
Acta Pharm Sin B ; 13(9): 3945-3955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719367

RESUMO

Immunotherapy has revolutionized the landscape of cancer treatment. However, single immunotherapy only works well in a small subset of patients. Combined immunotherapy with antitumor synergism holds considerable potential to boost the therapeutic outcome. Nevertheless, the synergistic, additive or antagonistic antitumor effects of combined immunotherapies have been rarely explored. Herein, we established a novel combined cancer treatment modality by synergizing p21-activated kinase 4 (PAK4) silencing with immunogenic phototherapy in engineered extracellular vesicles (EVs) that were fabricated by coating M1 macrophage-derived EVs on the surface of the nano-complex cores assembled with siRNA against PAK4 and a photoactivatable polyethyleneimine. The engineered EVs induced potent PAK4 silencing and robust immunogenic phototherapy, thus contributing to effective antitumor effects in vitro and in vivo. Moreover, the antitumor synergism of the combined treatment was quantitatively determined by the CompuSyn method. The combination index (CI) and isobologram results confirmed that there was an antitumor synergism for the combined treatment. Furthermore, the dose reduction index (DRI) showed favorable dose reduction, revealing lower toxicity and higher biocompatibility of the engineered EVs. Collectively, the study presents a synergistically potentiated cancer treatment modality by combining PAK4 silencing with immunogenic phototherapy in engineered EVs, which is promising for boosting the therapeutic outcome of cancer immunotherapy.

3.
ACS Appl Mater Interfaces ; 15(36): 42284-42292, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646168

RESUMO

Nanocontraception has been proposed and received extensive attention in recent years for population control. However, currently developed methods for nanocontraception still face problems in efficacy and safety. Here, we propose catalysis-mediated oxidation as a new strategy for nanocontraception. With the catalytic production of highly oxidative species, male contraception was successfully achieved after the administration of black phosphorus nanosheets into the testes of male mice. Further mechanistic studies revealed that contraception was induced by oxidative stress and apoptosis of spermatogenesis cells. Meanwhile, the apoptosis of germ cells released testis antigen and induced immune cell infiltration, which enhanced reproductive damage. Notably, the introduced black phosphorus nanosheets naturally degraded during the catalytic oxidation process and ultimately converted to harmless phosphates, indicating the safety of the strategy. Furthermore, the catalysis-mediated strategy avoids utilizing additional inducers, such as near-infrared irradiation, magnetic fields, or ultrasound, which may cause severe pain. In summary, the proposed catalysis-mediated contraception can be a self-cleared, convenient, and safe strategy for controlling male fertility.


Assuntos
Anticoncepção , Fósforo , Masculino , Animais , Camundongos , Fosfatos , Apoptose , Catálise
4.
Open Med (Wars) ; 18(1): 20230714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273916

RESUMO

Liver cirrhosis affects the structures and physiological functions of the intestine. Our previous study revealed that liver injury inhibited 25-hydroxylation of vitamin D (25(OH)-VD). The aim of this study was to investigate the roles and mechanisms of vitamin D in liver cirrhosis-induced intestinal injury. The rat liver cirrhosis model was established through the administration of carbon tetrachloride (CCl4) for 8 weeks. Hematoxylin-eosin staining was performed to unveil the intestinal injury induced by liver cirrhosis. Enzyme-linked immunosorbent and reverse transcription PCR (RT-PCR) analysis were used to determine the levels of 25(OH)-VD, vitamin D receptor, Cytochrome P450 24A1 (CYP24A1), and α-defensin 5 (DEFA5) in rat and human serum of liver cirrhosis. Furthermore, liver cirrhosis rats were treated with low-dose (500 IU/kg) and high-dose (2,000 IU/kg) vitamin D intraperitoneally. The expression levels of TLR4/MyD88/NF-κB signaling pathway were evaluated by RT-PCR and Western blot. In conclusion, we determined the deficiency of vitamin D and down-regulation of DEFA5 and intestinal damage induced by liver cirrhosis. Moreover, vitamin D effectively inhibited liver cirrhosis-induced intestinal inflammation and oxidative stress through the TLR4/MyD88/NF-κB pathway. Vitamin D might be a promising therapeutic strategy for future treatment of liver-induced intestinal injury.

5.
Front Pharmacol ; 13: 1042651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339568

RESUMO

Chronic pancreatitis (CP) is a precancerous illness linked to pancreatic ductal adenocarcinoma (PDAC), although the evolutionary mechanism is uncertain. CP is distinguished by severe fibrosis caused by the activation of pancreatic stellate cells (PSCs). The current clinical therapeutic protocol for CP lacks specific therapeutic medicines for the prevention and suppression of inflammation and fibrosis aggravating in CP. More research on specifically targeting PSCs would help facilitate the development of novel therapies for pancreatic fibrosis. Notably, using natural compounds from medicinal plants as new antifibrotic agents has become a focus of recent research and is widely employed as an alternative and complementary approach. Our goal was to shed light on the role of PSCs in the development of CP and provide a focused update on the new potential therapeutic strategies against PSCs in CP models. Future studies can refer to these possible strategies for drug design, bioavailability, pharmacokinetics, and other issues to obtain better clinical outcomes for treating CP.

6.
Ying Yong Sheng Tai Xue Bao ; 33(3): 813-820, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35524536

RESUMO

In recent years, the area of herbal medicine planting is rapidly increasing. The effects of planting herbal medicines on soil invertebrate communities are still unclear. To reveal the effects of planting different herbal medicines on the soil microarthropod communities, soil microarthropods in two fields of planting Coptis chinensis and Paris polyphylla for 3-year and 5-year, respectively, were investigated in Pengzhou, Chengdu in July 2020. A total of 526 individuals of soil microarthropods were recorded and classified into 4 classes, 17 orders, 69 families, and 98 genera or taxonomic groups. The communities were dominated by Isotoma, Piatynothrus, Folsomia, and Paranura. The community structure of soil microarthropods differed obviously among the two herbal medicine fields, with the main influencing taxonomic groups of Proisotoma, Ocesobates and Epicridae. The total taxonomic group richness of soil microarthropods were richer in C. chinensis field than P. polyphylla field. There was no significant difference in the abundance and diversity index between the two fields. With the increases of cultivating years, the abundance of soil microarthropods in C. chinensis field declined significantly, and Shannon index increased significantly in P. polyphylla field. The redundancy analysis showed that the community structure of soil microarthropods was mainly affected by soil available N, pH, total K, and available K. It suggested that the effects of cultivating herbal medicines on soil microarthropod communities differed between herbal medicine species. Therefore, we recommended to intercrop C. chinensis and P. polyphylla for maintaining the stability of soil microarthropod diversity and promoting ecosystem function.


Assuntos
Artrópodes , Liliaceae , Animais , Coptis chinensis , Ecossistema , Humanos , Solo , Microbiologia do Solo
7.
Mol Neurobiol ; 59(5): 2946-2961, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35247140

RESUMO

Deltamethrin (DLM) is a member of pyrethroid pesticide widely applied for agriculture and aquaculture, and its residue in the environment seriously threatens the bio-safety. The cerebrum might be vulnerable to pesticide-triggered oxidative stress. However, there is no specific antidote for treating DLM-triggered cerebral injury. Selenium (Se) is an essential trace element functionally forming selenoprotein glutathione peroxidase (GPX) in antioxidant defense. Se yeast (SY) is a common and effective organic form of Se supplement with high selenomethionine content. Accordingly, this study focused on investigating the therapeutic potential of SY on DLM-induced cerebral injury in quails after chronically exposing to DLM and exploring the underlying mechanisms. Quails were treated with/without SY (0.4 mg kg-1 SY added in standard diet) in the presence/absence of DLM (45 mg kg-1 body weight intragastrically) for 12 weeks. The results showed SY supplementation ameliorated DLM-induced cerebral toxicity. Concretely, SY elevated the content of Se and increased GPX4 level in DLM-treated quail cerebrum. Furthermore, SY enhanced antioxidant defense system by upregulating nuclear factor-erythroid-2-related factor 2 (Nrf2) associated members. Inversely, SY diminished the changes of apoptosis- and inflammation-associated proteins and genes including toll-like receptor 4 (TLR4). Collectively, our results suggest that dietary SY protects against DLM-induced cerebral toxicity in quails via positively regulating the GPX4/TLR4 signaling pathway. GPX4 may be a potential therapeutic target for insecticide-induced biotoxicity.


Assuntos
Cérebro , Praguicidas , Selênio , Animais , Antioxidantes/metabolismo , Cérebro/metabolismo , Nitrilas , Piretrinas , Codorniz/metabolismo , Saccharomyces cerevisiae/metabolismo , Selênio/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
8.
BMC Plant Biol ; 21(1): 525, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758730

RESUMO

BACKGROUND: Phosphorus is one of the essential elements for plant growth and development, but available phosphorus (Pi) content in many soil types is low. As a fast-growing tree species for timber production, Chinese fir is in great demand of Pi, and the lack of Pi in soil restricts the increase of productivity of Chinese fir plantation. Root morphology and the synthesis and secretion of organic acids play an important role in the uptake of phosphorus, but the molecular mechanisms of Chinese fir root responses to Pi deficiency are largely unexplored. In this study, seedlings of Yang 061 clone were grown under three Pi supply levels (0, 5 and 10 mg·L-1 P) and morphological attributes, organic acid content and enzyme activity were measured. The transcriptome data of Chinese fir root system were obtained and the expression levels of phosphorus responsive genes and organic acid synthesis related genes on citric acid and glyoxylate cycle pathway were determined. RESULTS: We annotated 50,808 Unigenes from the transcriptome of Chinese fir roots. Among differentially expressed genes, seven genes of phosphate transporter family and 17 genes of purple acid phosphatase family were up-regulated by Pi deficiency, two proteins of SPX domain were up-regulated and one was down-regulated. The metabolic pathways of the citric acid and glyoxylate cycle pathway were mapped, and the expression characteristics of the related Unigenes under different phosphorus treatments were analyzed. The genes involved in malic acid and citric acid synthesis were up-regulated, and the activities of the related enzymes were significantly enhanced under long-term Pi stress. The contents of citric acid and malic acid in the roots of Chinese fir increased after 30 days of Pi deficiency. CONCLUSION: Chinese fir roots showed increased expression of genes related with phosphorus starvation, citrate and malate synthesis genes, increased content of organic acids, and enhanced activities of related enzymes under Pi deficiency. The results provide a new insight for revealing the molecular mechanism of adaption to Pi deficiency and the pathway of organic acid synthesis in Chinese fir roots.


Assuntos
Cunninghamia/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Ácido Cítrico/metabolismo , Cunninghamia/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Redes e Vias Metabólicas , Doenças das Plantas/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
9.
Cell Biosci ; 11(1): 86, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985581

RESUMO

Pancreatic tumors are classified into endocrine and exocrine types, and the clinical manifestations in patients are nonspecific. Most patients, especially those with pancreatic ductal adenocarcinoma (PDAC), have lost the opportunity to receive for the best treatment at the time of diagnosis. Although chemotherapy and radiotherapy have shown good therapeutic results in other tumors, their therapeutic effects on pancreatic tumors are minimal. A multifunctional transcription factor, Yin-Yang 1 (YY1) regulates the transcription of a variety of important genes and plays a significant role in diverse tumors. Studies have shown that targeting YY1 can improve the survival time of patients with tumors. In this review, we focused on the mechanism by which YY1 affects the occurrence and development of pancreatic tumors. We found that a YY1 mutation is specific for insulinomas and has a role in driving the degree of malignancy. In addition, changes in the circadian network are a key causative factor of PDAC. YY1 promotes pancreatic clock progression and induces malignant changes, but YY1 seems to act as a tumor suppressor in PDAC and affects many biological behaviors, such as proliferation, migration, apoptosis and metastasis. Our review summarizes the progress in understanding the role of YY1 in pancreatic endocrine and exocrine tumors and provides a reasonable assessment of the potential for therapeutic targeting of YY1 in pancreatic tumors.

10.
J Chromatogr A ; 1649: 462236, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34038777

RESUMO

The widespread presence of lipid hydroperoxides in foodstuffs and biological samples has aroused great attentions in recent years, while it remains challenging for analysis of the fragility of O - O bond linkage of peroxides. In this present study, we explored the utility of electrospray ionization mass spectrometry (ESI-MS) for characterization of two fatty acid hydroperoxides from oxidation of linoleic acid and α-linolenic acid, which are the essential fatty acids abundant in many seeds and vegetable oils. The results indicated that in-source fragmentation occurred in the detection of the two fatty acid hydroperoxides in both positive and negative ion modes, which yielded characteristic fragments for ESI-MS analysis. In addition, the genotoxicity of fatty acid hydroperoxides for generation of nucleoside adducts was investigated. It was found that a variety of nucleoside adducts were formed from the reactions of fatty acid hydroperoxides and nucleosides. Furthermore, the decomposition products of the fatty acid hydroperoxides were determined, which provided evidence to elucidate the reaction mechanism for formation of nucleoside adducts.


Assuntos
Ácidos Graxos/química , Ácidos Linoleicos/química , Ácidos Linolênicos/química , Peróxidos Lipídicos/química , Nucleosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Oxirredução , Óleos de Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
BMC Plant Biol ; 20(1): 545, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287710

RESUMO

BACKGROUND: Under natural conditions, soil nutrients are heterogeneously distributed, and plants have developed adaptation strategies to efficiently forage patchily distributed nutrient. Most previous studies examined either patch strength or patch size separately and focused mainly on root morphological plasticity (increased root proliferation in nutrient-rich patch), thus the effects of both patch strength and size on morphological and physiological plasticity are not well understood. In this study, we examined the foraging strategy of Neyraudia reynaudiana (Kunth) Keng ex Hithc, a pioneer grass colonizing degraded sites, with respect to patch strength and size in heterogeneously distributed phosphorus (P), and how foraging patchily distributed P affects total plant biomass production. Plants were grown in sand-culture pots divided into ½, », 1/6 compartments and full size and supplied with 0 + 0/30, 0 + 7.5/30 and 7.5 + 0/30 mg P/kg dry soil as KH2PO4 or 0 + 15/15, 0 + 18.5/ 18.5, 7.5 + 15/15 mg kg - 1 in the homogenous treatment. The first amount was the P concentration in the central region, and that the second amount was the P concentration in the outer parts of the pot. RESULTS: After 3 months of growth under experimental conditions, significantly (p < 0.05) high root elongation, root surface area, root volume and average root diameter was observed in large patches with high patch strength. Roots absorbed significantly more P in P-replete than P-deficient patches. Whole plant biomass production was significantly higher in larger patches with high patch strength than small patches and homogeneous P distribution. CONCLUSION: The result demonstrates that root morphological and physiological plasticity are important adaptive strategies for foraging patchily distributed P and the former is largely determined by patch strength and size. The results also establish that foraging patchily distributed P resulted in increased total plant biomass production compared to homogeneous P distribution.


Assuntos
Adaptação Fisiológica/fisiologia , Biomassa , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Solo/química , Algoritmos , Análise Multivariada , Nutrientes/análise , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Tempo
12.
Curr Med Sci ; 40(3): 422-433, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32681247

RESUMO

Mitochondrial superoxide overproduction is believed to be responsible for the neurotoxicity associated with neurodegeneration. Mitochondria-targeted antioxidants, such as MitoQ, have emerged as potentially effective antioxidant therapies. Methionine sulfoxide reductase A (MsrA) is a key mitochondrial-localized endogenous antioxidative enzyme and it can scavenge oxidizing species by catalyzing the methionine (Met)-centered redox cycle (MCRC). In this study, we observed that the natural L-Met acted as a good scavenger for antimycin A-induced mitochondrial superoxide overproduction in PC12 cells. This antioxidation was largely dependent on the Met oxidase activity of MsrA. S-methyl-L-cysteine (SMLC), a natural analogue of Met that is abundantly found in garlic and cabbage, could activate the Met oxidase activity of MsrA to scavenge free radicals. Furthermore, SMLC protected against antimycin A-induced mitochondrial membrane depolarization and alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Thus, our data highlighted the possibility for SMLC supplement in the detoxication of mitochondrial damage by activating the Met oxidase activity of MsrA.


Assuntos
Antimicina A/farmacologia , Cisteína/farmacologia , Metionina/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Neurônios/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metionina Sulfóxido Redutases/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
13.
Mult Scler Relat Disord ; 44: 102300, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32590313

RESUMO

OBJECTIVE: . Coffee consumption has been suggested to decrease the risk of multiple sclerosis (MS). In this study, we aim to investigate the causal effect of coffee consumption on risk of MS by Mendelian randomization (MR) approaches. METHODS: . Through a genome-wide association study including 375,833 participants from UK Biobank, we obtained single-nucleotide polymorphisms (SNPs) associated with habitual coffee consumption (P < 5 × 10-8). Summary-level data for MS were obtained from a meta-analysis, incorporating 14,802 subjects with MS and 26,703 healthy controls of European ancestry, which was conducted by the International Multiple Sclerosis Genetics Consortium. MR analyses were performed using inverse-variance-weighted method, weighted median estimator, and MR-Egger regression. Additional analyses were further performed using MR-Egger intercept and Cochran's Q statistic to verify the robustness of our findings. RESULTS: . Nine coffee-associated SNPs were selected as instrumental variables. We failed to detect a causal effect of coffee consumption on MS risk (odds ratio, 1,00; 95% confidence interval, 0.98-1.01; P = 0.48). In the main MR analysis. Consistent results were yielded in sensitivity analyses using the weighted median and MR-Egger methods, and no horizontal pleiotropy (P = 0.49) was identified. CONCLUSION: . Our MR results indicated that coffee consumption might not be causally associated with risk of MS occurrence. Further well-designed genetic-epidemiological studies investigating the effect of coffee intake on the disease course, such as relapse and progression, are warranted.


Assuntos
Café , Esclerose Múltipla , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética
14.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G542-G553, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31984787

RESUMO

A lack of sunlight exposure, residence in the northern latitudes, and dietary vitamin D insufficiency are coprevalent with metabolic syndrome (MetS), Type 2 diabetes (T2D), and nonalcoholic fatty liver diseases (NAFLD), implying a potential causality and underlying mechanism. Whether vitamin D supplementation or treatment can improve these disorders is controversial, in part, because of the absence of large-scale trials. Experimental investigations, on the other hand, have uncovered novel biological functions of vitamin D in development, tumor suppression, and immune regulation, far beyond its original role as a vitamin that maintained calcium homeostasis. While the large intestine harbors massive numbers of microbes, the small intestine has a minimal quantity of bacteria, indicating the existence of a gating system located in the distal region of the small intestine that may restrain bacterial translocation to the small intestine. Vitamin D receptor (VDR) was found to be highly expressed at the distal region of small intestine, where the vitamin D signaling promotes innate immunity, including the expression of α-defensins by Paneth cells, and maintains the intestinal tight junctions. Thus, a new hypothesis is emerging, indicating that vitamin D deficiency may impair the intestinal innate immunity, including downregulation of Paneth cell defensins, leading to bacterial translocation, endotoxemia, systemic inflammation, insulin resistance, and hepatic steatosis. Here, we review the studies for vitamin D for innate immunity and metabolic homeostasis, and we outline the clinical trials of vitamin D for mitigating MetS, T2D, and NAFLD.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal , Imunidade Inata , Imunidade nas Mucosas , Mucosa Intestinal/metabolismo , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Vitamina D/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/imunologia , Síndrome Metabólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Vitamina D/uso terapêutico
15.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375486

RESUMO

Phytoplankton blooms are natural phenomena in the ocean, which are the results of rapid cell growth of some phytoplankton species in a unique environment. However, little is known about the molecular events occurring during the bloom. Here, we compared metaproteomes of two phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense in the coastal East China Sea. H. akashiwo and P. donghaiense accounted for 7.82% and 4.74% of the phytoplankton community protein abundances in the nonbloom sample, whereas they contributed to 60.13% and 78.09%, respectively, in their individual blooming samples. Compared with P. donghaiense, H. akashiwo possessed a significantly higher abundance of light-harvesting complex proteins, carbonic anhydrasem and RuBisCO. The blooming H. akashiwo cells expressed more proteins related to external nutrient acquisition, such as bicarbonate transporter SLC4, ammonium transporter, nitrite transporter, and alkaline phosphatase, while the blooming P. donghaiense cells highly expressed proteins related to extra- and intracellular organic nutrient utilization, such as amino acid transporter, 5'-nucleotidase, acid phosphatase, and tripeptidyl-peptidase. The strong capabilities of light harvesting, as well as acquisition and assimilation of inorganic carbon, nitrogen, and phosphorus, facilitated the formation of the H. akashiwo bloom under the high turbidity and inorganic nutrient-sufficient condition, whereas the competitive advantages in organic nutrient acquisition and reallocation guaranteed the occurrence of the P. donghaiense bloom under the inorganic nutrient-insufficient condition. This study highlights the power of metaproteomics for revealing the underlying molecular behaviors of different coexisting phytoplankton species and advances our knowledge on the formation of phytoplankton blooms.IMPORTANCE A deep understanding of the mechanisms driving bloom formation is a prerequisite for effective bloom management. Metaproteomics was applied in this study to reveal the adaptive and responsive strategies of two coexisting phytoplankton species, H. akashiwo and P. donghaiense, during their bloom periods. Metabolic features and niche divergence in light harvesting, as well as carbon, nitrogen, and phosphorus acquisition and assimilation likely promoted the bloom occurrence under different environments. The molecular behaviors of coexisting bloom-causing species will give clues for bloom monitoring and management in the oceans.


Assuntos
Fitoplâncton/genética , Fitoplâncton/metabolismo , Proteoma/metabolismo , Carbono/metabolismo , China , Proliferação Nociva de Algas , Nitrogênio/metabolismo , Oceano Pacífico , Fósforo/metabolismo
16.
Food Funct ; 10(9): 5555-5565, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429458

RESUMO

Exposure to chromium (Cr) causes a number of respiratory diseases, including lung cancer and pulmonary fibrosis. However, there is currently no safe treatment for Cr-induced lung damage. Here, we used in vivo and in vitro approaches to examine the protective effects of melatonin (MEL) on Cr-induced lung injury and to identify the underlying molecular mechanisms. We found that treatment of rats or a mouse lung epithelial cell MLE-12 with MEL attenuated K2Cr2O7-induced lung injury by reducing the production of oxidative stress and inflammatory mediators and inhibiting cell apoptosis. MEL treatment upregulated the expression of silent information regulator 1 (Sirt1), which deacetylated the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α). In turn, this increased the expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and key anti-oxidant target genes. These results suggest that melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Dietary MEL supplement may be a potential new strategy for the treatment of Cr poisoning.


Assuntos
Cromo/toxicidade , Lesão Pulmonar/tratamento farmacológico , Melatonina/administração & dosagem , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo , Animais , Suplementos Nutricionais/análise , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética
17.
Curr Med Sci ; 38(1): 1-10, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30074145

RESUMO

In this review, we summarize the involvement of vitamin C in mental disorders by presenting available evidence on its pharmacological effects in animal models as well as in clinical studies. Vitamin C, especially its reduced form, has gained interest for its multiple functions in various tissues and organs, including central nervous system (CNS). Vitamin C protects the neuron against oxidative stress, alleviates inflammation, regulates the neurotransmission, affects neuronal development and controls epigenetic function. All of these processes are closely associated with psychopathology. In the past few decades, scientists have revealed that the deficiency of vitamin C may lead to motor deficit, cognitive impairment and aberrant behaviors, whereas supplement of vitamin C has a potential preventive and therapeutic effect on mental illness, such as major depressive disorder (MDD), schizophrenia, anxiety and Alzheimer's disease (AD). Although several studies support a possible role of vitamin C against mental disorders, more researches are essential to accelerate the knowledge and investigate the mechanism in this field.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Transtornos Mentais/prevenção & controle , Vitaminas/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/uso terapêutico , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Transtornos Mentais/tratamento farmacológico , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico
18.
Int J Cancer ; 142(7): 1392-1404, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168185

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the malignant lethal tumors. It has been reported that the transcriptional regulator Yin Yang-1 (YY1) suppressed the invasion and metastasis of PDAC. However, the function of YY1 on proliferation and migration of pancreatic cancer remains to be clarified. In this study, we found that YY1 overexpression or knockdown can inhibit or promote the proliferation and migration of pancreatic cancer cells. Digital gene expression sequencing indicates that cyclin-dependent kinase inhibitor 3 (CDKN3) may be the candidate target gene of YY1. Then we found that YY1 can downregulate the expression of CDKN3 by directly binding to the promoter region of CDKN3. Silencing CDKN3 expression could inhibit the ability of cell proliferation and migration and overexpression of CDKN3 could restore the effects induced by YY1 overexpression in pancreatic cancer cells. The expression levels of YY1 and CDKN3 were negatively correlated in pancreatic cancer tissues and PDAC patients with higher levels of CDKN3 have poor prognosis. Vitro and vivo study show that CDKN3 can form a complex with MdM2-P53, thus leading to inhibiting the expression of P21, which is the target gene of P53, and finally facilitates the cell cycle to promote the proliferation of pancreatic cancer cells. Hence, YY1 can directly regulate the expression of CDKN3 and participate in the cycle of pancreatic cancer cells, which can inhibit the progression of pancreatic cancer. These results reveal that YY1-CDKN3-MDM2/P53-P21 axis is involved in pancreatic tumorigenesis, which may develop new methods for human pancreatic cancer therapy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Movimento Celular , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Aging Cell ; 16(2): 226-236, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27790859

RESUMO

Methionine (Met) sulfoxide reductase A (MsrA) is a key endogenous antioxidative enzyme with longevity benefits in animals. Only very few approaches have been reported to enhance MsrA function. Recent reports have indicated that the antioxidant capability of MsrA may involve a Met oxidase activity that facilities the reaction of Met with reactive oxygen species (ROS). Herein, we used a homology modeling approach to search the substrates for the oxidase activity of MsrA. We found that dimethyl sulfide (DMS), a main metabolite that produced by marine algae, emerged as a good substrate for MsrA-catalytic antioxidation. MsrA bounds to DMS and promoted its antioxidant capacity via facilitating the reaction of DMS with ROS through a sulfonium intermediate at residues Cys72, Tyr103, and Glu115, followed by the release of dimethyl sulfoxide (DMSO). DMS reduced the antimycin A-induced ROS generation in cultured PC12 cells and alleviated oxidative stress. Supplement of DMS exhibited cytoprotection and extended longevity in both Caenorhabditis elegans and Drosophila. MsrA knockdown abolished the cytoprotective effect and the longevity benefits of DMS. Furthermore, we found that the level of physiologic DMS was at the low micromolar range in different tissues of mammals and its level decreased after aging. This study opened a new window to elucidate the biological role of DMS and other low-molecular sulfides in the cytoprotection and aging.


Assuntos
Biocatálise/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/fisiologia , Longevidade/fisiologia , Metionina Sulfóxido Redutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Sulfetos/farmacologia , Aminoácidos/metabolismo , Animais , Antioxidantes/farmacologia , Sítios de Ligação , Caenorhabditis elegans/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Técnicas de Silenciamento de Genes , Longevidade/efeitos dos fármacos , Modelos Biológicos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
J Ethnopharmacol ; 190: 74-82, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27275773

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum multiflorum Thunb is a traditional Chinese medicine with anti-aging effect. 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (TSG) is generally considered as the main active component in Polygonum multiflorum Thunb. However, the effect of TSG on memory in adult is unclear till now. AIM OF STUDY: 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (TSG) is a polyphenols compound from Polygonum multiflorum Thunb. The present study aimed to evaluate the effect of chronic administration of TSG on hippocampal memory in normal mice. MATERIALS AND METHODS: Behavioral test, electrophysiology and golgi staining were used to evaluate the effect of TSG on hippocampus-dependent memory and synaptic plasticity. Western blotting was used to determine the expression of ERK1/2, CaMKII, and SIRT1. Real-time quantitative PCR was explored to measure miR-134. RESULTS: It was found that TSG enhanced hippocampus-dependent contextual fear memory and novel object recognition, facilitated hippocampal LTP and increased dendrite spine density in the CA1 region of hippocampus. TSG obviously promoted the phosphorylations of ERK1/2, CaMKII, CREB and the expression of BDNF in the hippocampus, with upregulation of silent information regulator 1 (SIRT1) and downregulation of miR-134. CONCLUSIONS: Chronic administration of TSG promotes hippocampal memory in normal mice, suggesting that supplementary of TSG might serve as an enhancement of memory.


Assuntos
Comportamento Animal/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , MicroRNAs/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/farmacologia , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/enzimologia , Ativação Enzimática , Medo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fosforilação , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA