Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioorg Chem ; 135: 106488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36989734

RESUMO

Abnormal activation of Hedgehog (Hh) signaling pathway mediates the genesis and progression of various tumors [1]. Currently, three drugs targeting the Hh signaling component Smoothened (Smo) have been marketed for the clinical treatment of basal cell tumors or acute myeloid leukemia. However, drug resistance is a common problem in those drugs, so the study of Smo inhibitors that can overcome drug resistance has important guiding significance for clinical adjuvant drugs. MTT assay, clone formation assay and EdU assay were used to detect the proliferation inhibitory activity of the drugs on tumor cells. The effect of B13 on cell cycle and apoptosis were detected by flow cytometry. An acute toxicity test was used to detect the toxicity of B13 in vivo, and xenograft tumor model was used to detect the efficacy of B13 in vivo. The binding of B13 to Smo was studied by BODIPY-cyclopamine competitive binding assay and molecular docking. The effect of B13 on the expression and localization of downstream target gene Gli1/2 of Smo was investigated by Western Blot and immunofluorescence assay. SmoD473H mutant cell line was constructed to study the effect of B13 against drug resistance. (1) B13 had the strongest inhibitory activity against colorectal cancer cells. (2) B13 can effectively inhibit the clone formation and EdU positive rate of colon cancer cells. (3) B13 can block the cell cycle in the G2/M phase and cell apoptosis. (4) B13 has low toxicity in vivo, and its efficacy in vivo is better than that of the Vismodegib. (5) Molecular docking and BODIPY-cyclopamine experiments showed that B13 could bind to Smo protein. (6) B13 can inhibit the protein expression of Gli1, the downstream of Smo, and inhibit its entry into the nucleus. (7) B13 could inhibit the expression of Gli1 in the HEK293 cells with SmoD473H, and the molecular docking results showed that B13 could bind SmoD473H protein. B13 with the best anti-tumor activity was screened out by MTT assay. In vitro, pharmacodynamics experiments showed that B13 could effectively inhibit the proliferation and metastasis of colorectal cancer cells, induce cell cycle arrest, and induce cell apoptosis. In vivo pharmacodynamics experiments showed that B13 was superior to Vismodegib in antitumor activity and had low toxicity in vivo. Mechanism studies have shown that B13 can bind Smo protein, inhibit the expression of downstream Gli1 and its entry into the nucleus. Notably, B13 overcomes resistance caused by SmoD473H mutations.


Assuntos
Neoplasias Colorretais , Proteínas Hedgehog , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Células HEK293 , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Proliferação de Células
2.
Heliyon ; 9(2): e12337, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825182

RESUMO

Ethnopharmacological relevance: Salvianolic acid D (Sal D) is a natural substance extracted from Radix Salviae that performs a cardiovascular benefit. However, the protective mechanism of Sal-D for heart failure remains uncertain. Aim of the study: In this study, we aim to evaluate the effect of Sal D on heart failure and elucidate its underlying mechanisms. Materials and methods: Using the spontaneously hypertensive rats (SHR) as a cardiac remodelling model, the cardioprotective effect of Sal D was evaluated. Employing bioinformatics analysis, the related mechanisms of Sal D treatment on heart failure were identified and validated by Western blot and polymerase chain reaction. Results: The results showed that Sal D significantly improved cardiac function and attenuated cardiac hypertrophy. Besides, Sal D impaired mitochondrial structure and restored the energy charge of cardiomyocytes managed by angiotensin II. Bioinformatics analysis suggested that Sal D might improve heart failure by modulating the Ras and PI3K/AKT signalling pathways verified in vitro and in vivo. Conclusion: In summary, Sal D can improve the heart function of SHR by inhibiting the Ras signalling pathway and activating the PI3K/AKT signalling pathway.

3.
Phytomedicine ; 108: 154246, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36274411

RESUMO

BACKGROUND: Most chronic kidney diseases (CKDs) develop to end-stage renal disease (ESRD), which is characterized by fibrosis and permanent tissue and function loss. As a result, better and more effective remedies are essential. Kaempferol (KAE) is a common flavonoid extracted from plants. It can control the progression of kidney fibrosis and the epithelial-to-mesenchymal transition (EMT) of the renal tubular system. PURPOSE: We aim to investigate the effect of KAE therapy on extracellular matrix deposition and stimulation of EMT in vitro and in vivo to elucidate the treatment mechanisms regulating these effects. STUDY DESIGN: Chronic hypertension-induced kidney fibrosis was studied in spontaneously hypertensive rats with chronic kidney disease. Biochemical analysis, histological staining, and the expression level of relative proteins were used to assess the effect of KAE on renal function and fibrosis. The direct impact of KAE on proliferation and migration was evaluated using human renal tubular epithelial cells (HK-2) induced by transforming growth factor-ß1 (TGF-ß1), which can then induce EMT. The molecular mechanism of KAE was verified using co-IP assay and immunofluorescence. RESULTS: KAE could reduce blood pressure and decrease the extracellular matrix (ECM) components (including collagen I and collagen Ш), TGF-ß1, and α-SMA in the kidneys of hypertension-induced rats with chronic kidney disease. Moreover, in HK-2 cell treated with TGF-ß1, KAE administration significantly suppressed proliferation, migration, and EMT via increasing the expression of E-cadherin, while reducing the N-cadherin and α-SMA. Sufu was exceedingly repressed in HK-2 cells treated with TGF-ß1. KAE inhibited the activation of Shh and Gli through increasing the expression of Sufu, thereby blocking the nuclear translocation of Gli1 in vitro. CONCLUSION: KAE ameliorated kidney fibrosis and EMT by inhibiting the sonic hedgehog signaling pathway, thereby to attenuate the pathological progression of hypertensive kidney fibrosis.


Assuntos
Hipertensão , Quempferóis , Insuficiência Renal Crônica , Animais , Humanos , Ratos , Colágeno , Transição Epitelial-Mesenquimal , Fibrose , Proteínas Hedgehog/metabolismo , Hipertensão/complicações , Quempferóis/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Fator de Crescimento Transformador beta1/metabolismo
4.
J Ethnopharmacol ; 272: 113922, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33588010

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kangxian formula (KXF) is a traditional Chinese medicine which shows effective outcomes in treating cardiac remodeling induced by hypertension. However, the exact effects and the mechanisms involved remain obscure. AIM OF THE STUDY: In this study, we aimed to identify the therapeutic role of KXF in vivo and in vitro, and investigate the mechanism of KXF on hypertension induced cardiac remodeling. MATERIALS AND METHODS: After quality control of KXF using fingerprint, blood pressure, cardiac structure/function indexes, and degree of myocardial collagen were measured in vivo. Moreover, the proliferation, migration, and fibroblast-to-myofibroblast transformation (FMT) of cardiac fibroblasts (CFBs) were determined. Using gene chip, the related mechanisms of KXF treatment on cardiac remodeling were identified and further validated by western blot and polymerase chain reaction. RESULTS: A stable quality control standard of KXF was established in this study. KXF administration ameliorated systolic/diastolic blood pressure, cardiac damages, and cardiac fibrosis in vivo. The proliferation, migration, and FMT of CFBs were also inhibited by the treatment of KXF medicated serum. Furthermore, KXF reduced the protein level of transforming growth factor-beta (TGF-ß) receptors Ⅰ, Ⅱ, Tak1, p38, Smad2/3, and Smad4 and the expression of mRNA, which are the hub proteins in the TGF-ß signaling pathway. CONCLUSION: Our findings suggest that KXF attenuates cardiac remodeling by improving cardiac damages, attenuating cardiac fibrosis, and inhibiting the activity of CFBs. In addition, KXF ameliorates cardiac remodeling partially through modulating the TGF-ß signaling pathway. These data provide insights and mechanisms into the wide application of KXF in clinical practice.


Assuntos
Vasos Coronários/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Coração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/diagnóstico por imagem , Masculino , Miocárdio/patologia , Ratos Endogâmicos SHR
5.
Front Pharmacol ; 11: 575294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643031

RESUMO

Chronic kidney disease (CKD) is becoming a notable health concern globally. The combination of Scutellaria baicalensis Georgi (SB) and Sophora japonica L. (SJ) has been demonstrated to have anti-hypertensive effects and improve kidney injury clinically. This study aimed to explore the renal protective effect of the combination of SB and SJ against CKD and clarify the potential mechanisms. Male spontaneously hypertensive rats (SHR) were used to induce hypertensive nephropathy and were treated with SB or SJ separately or in combination for 15 weeks, and an antibiotic group was used for a rescue experiment. Blood pressure, serum or urine biochemical markers, serum inflammation factors, short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and oxidative stress indicators were assessed. Western blot analysis was performed to determine the expression of intestinal tight junction proteins, including occludin and ZO-1. The mRNA expression of the SCFAs receptors olfactory 78 (Olfr78) and G protein-coupled receptor 41 (GPR41) was determined by quantitative real-time PCR. Gut microbiota profiles were established via high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene. SB and SJ significantly ameliorated the severity of renal injury induced by hypertension. The combination also decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and reduced that of Clostridiaceae. The intestinal barrier was improved, and the change in dominant bacteria reduced IS accumulation and further inhibited oxidative stress activation in kidneys. SB and SJ increased SCFAs production, inhibited inflammatory factor release, and regulated blood pressure by decreasing the expression of Olfr78 and increasing that of GPR41, then alleviated kidney damage. This research demonstrated the positive effects of SB and SJ in a rat model of hypertensive nephropathy, indicated that the treatment of SB and SJ by improving the intestinal barrier function, increasing SCFAs, reducing inflammation, decreasing IS, and inhibiting oxidative stress reactions.

6.
Oxid Med Cell Longev ; 2019: 2580409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612073

RESUMO

Current therapeutic approaches have a limited effect on cardiac remodeling, which is characteristic of cardiac fibrosis and myocardial hypertrophy. In this study, we examined whether Danshenol A (DA), an active ingredient extracted from the traditional Chinese medicine Radix Salviae, can attenuate cardiac remodeling and clarified the underlying mechanisms. Using the spontaneously hypertensive rat (SHR) as a cardiac remodeling model, DA ameliorated blood pressure, cardiac injury, and myocardial collagen volume and improved cardiac function. Bioinformatics analysis revealed that DA might attenuate cardiac remodeling through modulating mitochondrial dysfunction and reactive oxygen species. DA repaired the structure/function of the mitochondria, alleviated oxidative stress in the myocardium, and restored apoptosis of cardiomyocytes induced by angiotensin II. Besides, DA inhibited mitochondrial redox signaling pathways in both the myocardium and cardiomyocytes. Thus, our study suggested that DA attenuates cardiac remodeling induced by hypertension through modulating mitochondrial dysfunction and reactive oxygen species.


Assuntos
Diterpenos/uso terapêutico , Hipertensão/tratamento farmacológico , Mitocôndrias Cardíacas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Diterpenos/farmacologia , Humanos , Masculino , Ratos
7.
Biomed Pharmacother ; 91: 999-1005, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28525949

RESUMO

In this study, folic acid-conjugated lipid nanoparticles were successfully prepared to enhance the active targeting of capsaicin (CAP) in ovarian cancers. The particles were nanosized and exhibited a controlled release of drug in the physiological conditions. The folic acid (FA)-conjugated system exhibited a remarkably higher uptake of nanoparticles in the cancer cells compared to that of non-targeted system. The folate-conjugated CAP-loaded lipid nanoparticles (CFLN) upon interacting with cancer cells were internalized via receptor-mediated endocytosis mechanism and resulted in higher concentration in the cancer cells. Consistently, CFLN showed a remarkably higher toxic effect compared to that of non-targeted nanoparticle system. CFLN showed significantly higher cancer cell apoptosis with nearly 39% of cells in apoptosis chamber (early and late) compared to only ∼21% and ∼11% for CAP-loaded lipid nanoparticles (CLN) and CAP. The loading of drug in the lipid nanoparticle system extended the drug retention in the blood circulation and allowed the active targeting to specific cancer cells. The prolonged circulation of drug attributed to the antifouling property of polyethylene glycol molecule in the structure. Overall, study highlights that using targeting moiety could enhance the therapeutic response of nanomedicines in the treatment of solid tumors.


Assuntos
Capsaicina/química , Capsaicina/farmacologia , Ácido Fólico/química , Lipídeos/química , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Nanomedicina/métodos , Tamanho da Partícula , Polietilenoglicóis/química
8.
IEEE Trans Neural Syst Rehabil Eng ; 24(1): 128-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26054072

RESUMO

The concept of controlling a wheelchair using brain signals is promising. However, the continuous control of a wheelchair based on unstable and noisy electroencephalogram signals is unreliable and generates a significant mental burden for the user. A feasible solution is to integrate a brain-computer interface (BCI) with automated navigation techniques. This paper presents a brain-controlled intelligent wheelchair with the capability of automatic navigation. Using an autonomous navigation system, candidate destinations and waypoints are automatically generated based on the existing environment. The user selects a destination using a motor imagery (MI)-based or P300-based BCI. According to the determined destination, the navigation system plans a short and safe path and navigates the wheelchair to the destination. During the movement of the wheelchair, the user can issue a stop command with the BCI. Using our system, the mental burden of the user can be substantially alleviated. Furthermore, our system can adapt to changes in the environment. Two experiments based on MI and P300 were conducted to demonstrate the effectiveness of our system.


Assuntos
Interfaces Cérebro-Computador , Ecossistema , Eletroencefalografia/instrumentação , Sistemas Homem-Máquina , Reconhecimento Automatizado de Padrão/métodos , Robótica/instrumentação , Cadeiras de Rodas , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Aprendizado de Máquina , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Navegação Espacial , Adulto Jovem
9.
Inflammation ; 35(3): 967-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22083490

RESUMO

Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.


Assuntos
Inflamação/tratamento farmacológico , Macrófagos/imunologia , NF-kappa B/metabolismo , Piranocumarinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apiaceae , Linhagem Celular , Cumarínicos/farmacologia , Quinase I-kappa B/metabolismo , Mediadores da Inflamação , Interleucina-6/biossíntese , Interleucina-6/genética , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Phytother Res ; 25(4): 550-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20842678

RESUMO

Praeruptorin A (PA) is a pyranocoumarin compound isolated from the dried root of Peucedanum praeruptorum Dunn (Umbelliferae). However, the antiinflammatory effect of PA has not been reported. The present study investigated the antiinflammatory effect of PA in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. PA significantly inhibited the LPS-induced production of nitric oxide (NO), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase (iNOS), IL-1ß and TNF-α were also suppressed by this compound. Further study showed that PA decreased the cytoplasmic loss of inhibitor κB-α (IκB-α) protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. Taken together, the results suggest that PA may exert antiinflammatory effects in vitro in LPS-stimulated RAW 264.7 macrophages through inhibition of NF-κB signal pathway activation.


Assuntos
Cumarínicos/farmacologia , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Imunofluorescência , Inflamação/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Phytother Res ; 24(2): 219-24, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19610026

RESUMO

AIM: Hepatic glycogen phosphorylase (GP) and glucose-6-phosphatase (G6Pase) are important in control of blood glucose homeostasis, and are considered to be potential targets for antidiabetic drugs. Astragaloside IV has been reported to have a hypoglycemic effect. However, the biochemical mechanisms by which astragaloside IV regulates hepatic glucose-metabolizing enzymes remain unknown. The present study examines whether GP and G6Pase mediate the hypoglycemic effect of astragaloside IV. METHODS: Type 2 diabetic mice were treated with astragaloside IV for 2 weeks. Blood glucose and insulin levels were measured by a glucometer and the ELISA method, respectively. Total cholesterol (TC) and triglyceride (TG) levels were determined using Labassay kits. Activities of hepatic GP and G6Pase were measured by the glucose-6-phosphate dehydrogenase-coupled reaction. The mRNA and protein levels of both enzymes were determined by real-time RT-PCR and Western blotting. RESULTS: Astragaloside IV at 25 and 50 mg/kg significally decreased the blood glucose, TG and insulin levels, and inhibited the mRNA and protein expression as well as enzyme activity of GP and G6Pase in diabetic mice. CONCLUSIONS: Astragaloside IV exhibited a hypoglycemic effect in diabetic mice. The hypoglycemic effect of this compound may be explained, in part, by its inhibition of hepatic GP and G6Pase activities.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glucose-6-Fosfatase/metabolismo , Glicogênio Fosforilase/metabolismo , Hipoglicemiantes/farmacologia , Fígado/enzimologia , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Diabetes Mellitus Experimental/enzimologia , Medicamentos de Ervas Chinesas/farmacologia , Insulina/sangue , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estreptozocina , Triglicerídeos/sangue
12.
Phytother Res ; 23(6): 778-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19142982

RESUMO

MicroRNAs (miRNAs) play an important role in cancers. A number of miRNA expression-profiling studies have been done to identify the miRNA signatures of cancers from different cellular origin. There is, however, relatively little information on how anticancer agents regulate miRNA expression. Ellagitannin (BJA3121), 1,3-Di-O-galloyl-4,6-(s)-HHDP-b-D-glucopyranose, is a new natural polyphenol compound isolated from Balanophora Japonica MAKINO. Our preliminary results have shown that BJA3121 had antiproliferative effect and modified the expression of different genes in human HepG(2) cancer cells. In this study, we further evaluate whether this antineoplastic compound is able to alter miRNA expression in HepG(2) cells. We demonstrated for the first time that BJA3121 can regulate the expression of 25 miRNAs, including 17 upregulated and 8 downregulated miRNAs in HepG(2) cells. Our results suggested that BJA3121-modifed miRNA expression can mediate, at least in part, the antiproliferative and multigene regulatory action induced by the compound on HepG(2) cancer cells.


Assuntos
Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica , Taninos Hidrolisáveis/farmacologia , MicroRNAs/metabolismo , Fenóis/farmacologia , Balanophoraceae/química , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Polifenóis
13.
Zhong Yao Cai ; 27(11): 840-2, 2004 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-15810593

RESUMO

This is the first report to purify a new peptide SV-PP-1 from Agkistrodon blomhoffii Bioe. SV-PP-1 has molecular weight of 1234.616 Da and can inhibit on platelet aggregation. SV-PP-1 significantly inhibited the ADP-induced platelet aggregation. It has been found up to now that SV-PP-1 is the smallest peptide inhibiting on platelet aggregation from snake venom.


Assuntos
Agkistrodon , Materia Medica/farmacologia , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Masculino , Materia Medica/isolamento & purificação , Peso Molecular , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/isolamento & purificação , Coelhos
14.
Zhong Yao Cai ; 27(12): 914-5, 2004 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-15807242

RESUMO

A polypeptide, SV-PP-2, was purified from Agkistrodon blomhoffii Bioe by HPLC C18 column. The SV-PP-2 has molecular weight of 23339.00 Da, and can inhibit the ADP-induced platelet aggregation in dose-dependent manner. There have been no such polypeptides reported yet which has inhibition of platelet aggregation and similar molecular weight to SV-PP-2.


Assuntos
Agkistrodon , Materia Medica/farmacologia , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Venenos de Serpentes/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Masculino , Materia Medica/isolamento & purificação , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/isolamento & purificação , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA