Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537441

RESUMO

BACKGROUND: Leukopenia could be induced by chemotherapy, which leads to bone marrow suppression and even affects the therapeutic progression of cancer. Qijiao Shengbai Capsule (QSC) has been used for the treatment of leukopenia in clinic, but its bioactive components and mechanisms have not yet been elucidated clearly. PURPOSE: This study aimed to elucidate the molecular mechanisms of QSC in treating leukopenia. STUDY DESIGN: Serum pharmacochemistry, multi-omics, network pharmacology, and validation experiment were combined to study the effect of QSC in murine leukopenia model. METHODS: First, UPLC-QTOF-MS was used to clarify the absorbed components of QSC. Then, cyclophosphamide (CTX) was used to induce mice model with leukopenia, and the therapeutic efficacy of QSC was assessed by an integrative approach of multi-omics and network pharmacology strategy. Finally, molecular mechanisms and potential therapeutic targets were identified by validated experiments. RESULTS: 121 compounds absorbed in vivo were identified. QSC significantly increase the count of white blood cells (WBCs) in peripheral blood of leukopenia mice with 15 days treatment. Multi-omics and network pharmacology revealed that leukotriene pathway and MAPK signaling pathway played crucial roles during the treatment of leukopenia with QSC. Six targets (ALOX5, LTB4R, CYSLTR1, FOS, JUN, IL-1ß) and 13 prototype compounds were supposed to be the key targets and potential active components, respectively. The validation experiment further confirmed that QSC could effectively inhibit the inflammatory response induced by leukopenia. The inhibitors of ALOX5 activity can significantly increase the number of WBCs in leukopenia mice. Molecular docking of ALOX5 suggested that calycosin, daidzein, and medicarpin were the potentially active compounds of QSC. CONCLUSION: Leukotriene pathway was found for the first time to be a key role in the development of leukopenia, and ALOX5 was conformed as the potential target. QSC may inhibit the inflammatory response and interfere the leukotriene pathway, it is able to improve hematopoiesis and achieve therapeutic effects in the mice with leukopenia.


Assuntos
Medicamentos de Ervas Chinesas , Leucopenia , Leucotrienos , Animais , Leucopenia/tratamento farmacológico , Leucopenia/induzido quimicamente , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Leucotrienos/metabolismo , Masculino , Ciclofosfamida , Modelos Animais de Doenças , Farmacologia em Rede , Transdução de Sinais/efeitos dos fármacos , Cápsulas , Multiômica
2.
Fitoterapia ; 173: 105832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280682

RESUMO

OBJECTIVE: The root of Ilex asprella (RIA) is a popular plant resource for treating inflammation-related diseases. The purpose of this study was to identify the secondary metabolites, to compare anti-inflammatory effects and to determine the quality marker components among root, stem and rhizome sections of IA. METHODS: Chemical fingerprints of stem, root and rhizome of IA was determined by high performance liquid chromatography (HPLC). A reliable method using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established for comprehensively determining the chemical constituents of the plants. Anti-inflammatory activities of IA and its ingredients were screened by in vivo mouse ear swelling and in vitro LPS-induced release of NO from RAW264.7 cells experiments. RESULTS: Root, stem and rhizome of IA have shown high similarity in chemical fingerprints. Totally 149 compounds were characterized in IA, including triterpenoids, triterpenoid saponins, phenolic acids and lignans. 44 of them were identified based on co-occurring Mass2Motifs, including 19 unreported ones, whilst 17 were tentatively confirmed by comparison with reference compounds. No significant anti-inflammatory activity difference among root, stem and rhizome parts of IA was found. Ilexsaponin B2, protocatechualdehyde, isochlorogenic acid B and quinic acid, were screened out as quality marker compounds in IA. CONCLUSION: A sensitive and rapid strategy was established to evaluate the differences on secondary metabolites of different parts of IA for the first time, and this study may contribute to the quality evaluation of medicinal herbs and provide theoretically data support for further analysis of different parts of IA.


Assuntos
Ilex , Rizoma , Animais , Camundongos , Rizoma/química , Ilex/química , Cromatografia Líquida de Alta Pressão/métodos , Estrutura Molecular , Anti-Inflamatórios/farmacologia
3.
Biomed Chromatogr ; 37(6): e5630, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949600

RESUMO

Chrysanthemi Flos (Juhua), an edible herbal medicine that possesses efficacies of dispersing wind, clearing heat and detoxifying. Studies have demonstrated that the health benefits of Chrysanthemi Flos are largely attributable to its anti-inflammatory effects. However, the correlation between the compounds monitored by the current quality control methods and the anti-inflammatory effects of Chrysanthemi Flos is unclear. In order to better control the quality of Chrysanthemi Flos, the identification of anti-inflammatory quality markers (Q-markers) of Chrysanthemi Flos was performed. The chemical components of Chrysanthemi Flos were profiled by HPLC fingerprints combined with chemometrics methods. Simultaneously, the anti-inflammatory activities of 10 batches of water extracts of Chrysanthemi Flos were evaluated in lipopolysaccharide-activated RAW 264.7 macrophages cells. Gray correlation analysis was performed to assess the relationship between the anti-inflammatory activity and chemical properties. The results showed that 13 common peaks were closely correlated with the anti-inflammatory effect, and further bioactivity re-evaluation confirmed that 10 known compounds exerted a strong anti-inflammatory effect. The quantitative analysis of the 10 Q-markers showed that the 25 batches of samples could be discriminated into different zones according to their producing areas. Conclusively, the present work identified 10 anti-inflammatory Q-markers of Chrysanthemi Flos using spectrum-effect relationships combined with bioactivity re-evaluation.


Assuntos
Chrysanthemum , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Chrysanthemum/química , Medicamentos de Ervas Chinesas/química , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA