Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 50(11): 1423-1436, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125606

RESUMO

While individual susceptibility to traumatic brain injury (TBI) has been speculated, past work does not provide an analysis considering how physical features of an individual's brain (e.g., brain size, shape), impact direction, and brain network features can holistically contribute to the risk of suffering a TBI from an impact. This work investigated each of these features simultaneously using computational modeling and analyses of simulated functional connectivity. Unlike the past studies that assess the severity of TBI based on the quantification of brain tissue damage (e.g., principal strain), we approached the brain as a complex network in which neuronal oscillations orchestrate to produce normal brain function (estimated by functional connectivity) and, to this end, both the anatomical damage location and its topological characteristics within the brain network contribute to the severity of brain function disruption and injury. To represent the variations in the population, we analyzed a publicly available database of brain imaging data and selected five distinct network architectures, seven different brain sizes, and three uniaxial head rotational conditions to study the consequences of 74 virtual impact scenarios. Results show impact direction produces the most significant change in connections across brain areas (structural connectome) and the functional coupling of activity across these brain areas (functional connectivity). Axial rotations were more injurious than those with sagittal and coronal rotations when the head kinematics were the same for each condition. When the impact direction was held constant, brain network architecture showed a significantly different vulnerability across axial and sagittal, but not coronal rotations. As expected, brain size significantly affected the expected change in structural and functional connectivity after impact. Together, these results provided groupings of predicted vulnerability to impact-a subgroup of male brain architectures exposed to axial impacts were most vulnerable, while a subgroup of female brain architectures was the most tolerant to the sagittal impacts studied. These findings lay essential groundwork for subject-specific analyses of concussion and provide invaluable guidance for designing personalized protection equipment.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Masculino , Feminino , Humanos , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Simulação por Computador
2.
Artigo em Inglês | MEDLINE | ID: mdl-35392642

RESUMO

Objective: The aim of this study was to systematically summarize and form an expert consensus on the theoretical experience of tongue and facial features for the identification of nine types of traditional Chinese medicine (TCM) constitution. Additionally, we sought to explore the feasibility of TCM constitution identification through objective tongue and facial features. Methods: We used Delphi method to investigate the opinions of experts on facial and tongue feature items for identifying TCM constitution. We developed and validated a diagnostic nomogram for blood stasis constitution (BSC) based on objective facial and tongue features to demonstrate the reliability of expert consultation. Results: Eleven experts participated in two rounds of expert consultation. The recovery rates of the two rounds of expert consultation were 100.0% and 90.9%. After the first round, 39 items were screened out from 147 initial items, and 2 items were supplemented by experts. In the second round, 7 items were eliminated, leaving 34 items for 8 types of TCM constitution. The coefficient of variation in the first round was 0.11-0.49 for the 147 items and 0.11-0.29 for the included items. The coefficient of variation in the second round was 0.10-0.27 for the 41 items and 0.10-0.20 for the included items. The W value was 0.548 (P < 0.001) in the first round and 0.240 (P < 0.001) in the second round. Based on expert consultation, we selected BSC as an example and developed and validated a diagnostic nomogram consisting of six indicators: sex, hair volume, lip color-dark purple, susceptibility-facial pigmentation/chloasma/ecchymosis, zygomatic texture-red blood streaks, and sublingual vein-varicose and dark purple. The nomogram showed good discrimination (AUC: 0.917 [95% confidence interval [CI], 0.877-0.956] for the primary dataset, 0.902 [95% CI, 0.828-0.976] for the validation dataset) and good calibration. Decision curve analysis demonstrated that the nomogram was clinically useful. Conclusion: This is the first study to systematically summarize the existing knowledge and clinical experience to form an expert consensus on the tongue and facial features of nine types of TCM constitution. Our results will provide important prior knowledge and expert experience for future constitution identification research. Based on expert consultation, this study presents a nomogram for BSC that incorporates objective facial and tongue features, which can be conveniently used to facilitate the individualized identification of BSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA