Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4111-4116, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467721

RESUMO

Sanguinarine is the main active component of the Papaver plants, and protopine-6-hydroxylase(P6 H), involved in the sanguinarine biosynthetic pathway, can oxidize protopine to 6-hydroxyprotopine. The investigation on the diversity of P6 H genes in the medicinal Papaver plants contributes to the acquirement of P6 H with high activity to increase the biosynthesis of sanguinarine. Five P6 H genes in P. somniferum, P. orientale, and P. rhoeas were discovered based on the re-sequencing data of the Papaver species, followed by bioinformatics analysis. With the elongation factor 1α(EF-1α), which exhibits stable expression in the root and stem, as the internal reference gene, the transcription levels of P6H genes in roots and stems of the Papaver plants were detected by real-time fluorescent quantitative PCR. As indicated by the re-sequencing results, there were two genotypes of P6H in P. somniferum and P. orientale, respectively, and only one in P. rhoeas. The bioinformatics analysis showed that the P6 H proteins of the three Papaver plants contained the conserved domain cl12078, which is the characteristic of p450 supergene family, and transmembrane regions. The existence of signal peptide remained verification. Real-time fluorescent quantitative PCR results revealed that the transcription level of P6 H in roots of P. somniferum was about 1.44 times of that in stems(α=0.05). The present study confirmed genetic diversity of P6 H in the three medicinal Papaver plants, which lays a basis for the research on the biosynthesis pathway and mechanism of sanguinarine in Papaver species.


Assuntos
Alcaloides de Berberina , Papaver , Benzofenantridinas , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Papaver/genética
2.
Phytomedicine ; 81: 153410, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285470

RESUMO

BACKGROUND: Homocysteine (Hcy) induced vascular endothelial dysfunction is known to be closely associated with oxidative stress and impaired NO system. 1,8-Dihydroxy-3-methoxy-6-methylanthracene-9,10-dione (physcion) has been known to has antioxidative and anti-inflammatory properties. PURPOSE: The purpose of the present study was to define the protective effect of physcion on Hcy-induced endothelial dysfunction and its mechanisms involved. STUDY DESIGN AND METHODS: Hyperhomocysteinemia (HHcy) rat model was induced by feeding 3% methionine. A rat thoracic aortic ring model was used to investigate the effects of physcion on Hcy-induced impairment of endothelium-dependent relaxation. Two doses, low (L, 30 mg/kg/day) and high (H, 50 mg/kg/day) of physcion were used in the present study. To construct Hcy-injured human umbilical vein endothelial cells (HUVECs) model, the cells treated with 3 mM Hcy. The effects of physcion on Hcy-induced HUVECs cytotoxicity and apoptosis were studied using MTT and flow cytometry. Confocal analysis was used to determine the levels of intracellular Ca2+. The levels of protein expression of the apoptosis-related markers Bcl-2, Bax, caspase-9/3, and Akt and endothelial nitric oxide synthase (eNOS) were evaluated by western blot. RESULTS: In the HHcy rat model, plasma levels of Hcy and malondialdehyde (MDA) were elevated (20.45 ± 2.42 vs. 4.67 ± 1.94 µM, 9.42 ± 0.48 vs. 3.47 ± 0.59 nM, p < 0.001 for both), whereas superoxide dismutase (SOD) and nitric oxide (NO) levels were decreased (77.11 ± 4.78 vs. 115.02 ± 5.63 U/ml, 44.51 ± 4.45 vs. 64.18 ± 5.34 µM, p < 0.001 and p < 0.01, respectively). However, treatment with physcion significantly reversed these changes (11.82 ± 2.02 vs. 20.45 ± 2.42 µM, 5.97 ± 0.72 vs. 9.42 ± 0.48 nM, 108.75 ± 5.65 vs. 77.11 ± 4.78 U/ml, 58.14 ± 6.02 vs. 44.51 ± 4.45 µM, p < 0.01 for all). Physcion also prevented Hcy-induced impairment of endothelium-dependent relaxation in HHcy rats (1.56 ± 0.06 vs. 15.44 ± 2.53 nM EC50 for ACh vasorelaxation, p < 0.05 vs. HHcy). In Hcy-injured HUVECs, physcion inhibited the impaired viability, apoptosis and reactive oxygen species. Hcy treatment significantly increased the protein phosphorylation levels of p38 (2.26 ± 0.20 vs. 1.00 ± 0.12, p <0.01), ERK (2.11 ± 0.21 vs. 1.00 ± 0.11, p <0.01) and JNK. Moreover, physcion reversed the Hcy-induced apoptosis related parameter changes such as decreased mitochondrial membrane potential (MMP) and Bcl-2/Bax protein ratio, and increased protein expression of caspase-9/3 in HUVECs. Furthermore, the downregulation of Ca2+, Akt, eNOS and NO caused by Hcy were recovered with physcion treatment in HUVECs. CONCLUSION: Physcion prevents Hcy-induced endothelial dysfunction by activating Ca2+- and Akt-eNOS-NO signaling pathways. This study provides the first evidence that physcion might be a candidate agent for the prevention of cardiovascular disease induced by Hcy.


Assuntos
Cálcio/metabolismo , Emodina/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Homocisteína/metabolismo , Hiper-Homocisteinemia/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Emodina/farmacologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hiper-Homocisteinemia/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA