Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Planta Med ; 90(5): 353-367, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295847

RESUMO

Gambogenic acid is a derivative of gambogic acid, a polyprenylated xanthone isolated from Garcinia hanburyi. Compared with the more widely studied gambogic acid, gambogenic acid has demonstrated advantages such as a more potent antitumor effect and less systemic toxicity than gambogic acid according to early investigations. Therefore, the present review summarizes the effectiveness and mechanisms of gambogenic acid in different cancers and highlights the mechanisms of action. In addition, drug delivery systems to improve the bioavailability of gambogenic acid and its pharmacokinetic profile are included. Gambogenic acid has been applied to treat a wide range of cancers, such as lung, liver, colorectal, breast, gastric, bladder, and prostate cancers. Gambogenic acid exerts its antitumor effects as a novel class of enhancer of zeste homolog 2 inhibitors. It prevents cancer cell proliferation by inducing apoptosis, ferroptosis, and necroptosis and controlling the cell cycle as well as autophagy. Gambogenic acid also hinders tumor cell invasion and metastasis by downregulating metastasis-related proteins. Moreover, gambogenic acid increases the sensitivity of cancer cells to chemotherapy and has shown effects on multidrug resistance in malignancy. This review adds insights for the prevention and treatment of cancers using gambogenic acid.


Assuntos
Antineoplásicos , Xantenos , Animais , Apoptose , Linhagem Celular Tumoral , Xantenos/farmacologia , Xantenos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Drug Des Devel Ther ; 17: 2909-2929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753228

RESUMO

Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.


Assuntos
Neoplasias , Vitanolídeos , Humanos , Neoplasias/tratamento farmacológico , Vitanolídeos/farmacologia , Disponibilidade Biológica , Suplementos Nutricionais
3.
Phytomedicine ; 109: 154617, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610140

RESUMO

BACKGROUND: Searching the targets of natural products is very important for drug discovery and elucidating the mechanism of drug action and disease. Honokiol (HK), as the major active component of Magnolia officinalis Rehder & E.H.Wilson, has been widely used in medicine and cosmetics. Among its bioactivities, its anti-inflammatory activity is particularly impressive. However, the target protein of HK in anti-inflammatory action and its regulatory mechanism are unclear. PURPOSE: Here, we identified the target protein and molecular mechanism of the anti- inflammatory action of HK. METHODS: First, an LPS-induced septic shock model and DSS-induced ulcerative colitis model were used to assess the anti-inflammatory efficacy of HK. Second, the drug affinity responsive target stability, proteomics analysis, thermal shift assays and cellular thermal shift assays were used to identify and validate the target of HK. Finally, western blot, ELISA, LDH immunofluorescence staining, shRNA and LC/MS for L-leucine analysis were performed to determine the mechanism of the anti-inflammatory action of HK. RESULTS: This study revealed that HK significantly alleviated LPS-induced septic shock and DSS-induced ulcerative colitis in vivo, suggesting that HK has significant anti-inflammatory activity. HK treatment dramatically reduced IL-1ß release and caspase-1 activation at different time points, showing that HK could inhibit both NLRP3 inflammasome priming and activation processes in cells. HK also suppressed adaptor apoptosis speck-like protein oligomerization. Mechanistically, SLC3A2 was identified as a direct target of HK in THP-1 cells. HK downregulated SLC3A2 expression by promoting its degradation via proteasome-mediated proteolysis. Further study demonstrated that HK triggered SLC3A2 to suppress NLRP3 inflammasome activation by significantly reducing the content of L-leucine transported into cells and lysosomes to block the mTORC1 pathway. CONCLUSIONS: Our work identified HK as a promising anti-inflammatory drug candidate through the SLC3A2/L-leucine/mTORC1/NLRP3 pathways.


Assuntos
Colite Ulcerativa , Choque Séptico , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Lipopolissacarídeos , Leucina , Anti-Inflamatórios/farmacologia
4.
Phytomedicine ; 102: 154163, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35597027

RESUMO

BACKGROUND: Artemisia anomala S. Moore (Compositae), known as "Nan-Liu-Ji-Nu" in traditional Chinese medicine (TCM), has been used to treat many inflammatory diseases, including enteritis, acute icteric hepatitis, rheumatism, toothache, tonsillitis, and chronic bronchitis, for centuries. Our preliminary studies have demonstrated that the ethanolic extract of A. anomala (EAA) might be with the potential of inhibiting the activation of the NLRP3 inflammasome. However, the anti-inflammatory activity of EAA based on NLRP3 inflammasome inhibition is still unclear. PURPOSE: This work aimed to elucidate the anti-inflammatory mechanism of EAA by inhibiting NLRP3 inflammasome activation. METHODS: Lipopolysaccharide (LPS)-primed bone marrow-derived macrophages (BMDMs) were used to evaluate the inhibitory effects on NLRP3 inflammasome activation. The level of IL-1ß was determined by ELISA. The expression levels of IL-1ß, caspase-1, NLRP3, and ASC were assayed using western blot analysis. ASC oligomerization and speck formation were detected by immunofluorescence microscopy. The measurements of intracellular chloride and potassium were conducted using N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) probe assay and inductively coupled plasma-optical emission spectrometry (ICP-OES), respectively. Mitochondrial reactive oxygen species (mtROS) were examined using the MitoSOX method. Acridine orange (AO) staining was used to detect the permeability of the lysosomal membrane. A DSS-induced ulcerative colitis model was established to evaluate the anti-inflammatory effects of EAA in vivo. Finally, high-performance liquid chromatography (HPLC) was employed to identify and quantify the major constituents of EAA. RESULTS: In BMDMs, EAA significantly inhibited the release of IL-1ß induced by LPS. The mechanistic study revealed that EAA inhibited NLRP3 inflammasome activation by blocking the oligomerization of ASC and suppressed the LPS-induced priming step. Furthermore, EAA protected lysosomes by inhibiting the TAK1-JNK pathway, thereby inhibiting the assembly of downstream NLRP3 inflammasome and the production of IL-1ß. In addition, EAA exerted potent protective effects in an ulcerative colitis model by decreasing the content of colonic IL-1ß and alleviating the process of ulcerative colitis. HPLC analysis identified eight main components of EAA, including isofraxidin (1), quercetin-7-O-ß-D-glucopyranoside (2), apigenin-7-O-ß-D-glucopyranoside (3), 7-methoxycoumarin (4), quercetin (5), luteolin (6), kaempferol (7), and eupatorin (8), Of these compounds, quercetin and kaempferol were found to be the most potent ingredients. CONCLUSION: These findings collectively reveal that EAA exerts anti-inflammatory effects by both suppressing the NLRP3 priming step and protecting lysosomes to inhibit NLRP3 inflammasome activation, suggesting that this traditional herbal medicine might be used to treat NLRP3-driven inflammatory diseases.


Assuntos
Artemisia , Colite Ulcerativa , Anti-Inflamatórios/farmacologia , Caspase 1/metabolismo , Inflamassomos , Interleucina-1beta/metabolismo , Quempferóis , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Quercetina
5.
Bioeng Transl Med ; 7(1): e10263, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111955

RESUMO

Besides its well-known benefits on human health, calcitriol, the hormonally active form of vitamin D3, has been being evaluated in clinical trials as an anticancer agent. However, currently available results are contradictory and not fundamentally deciphered. To the best of our knowledge, hypercalcemia caused by high-dose calcitriol administration and its low bioavailability limit its anticancer investigations and translations. Here, we show that the one-step self-assembly of calcitriol and amphiphilic cholesterol-based conjugates leads to the formation of a stable minimalist micellar nanosystem. When administered to mice, this nanosystem demonstrates high calcitriol doses in breast tumor cells, significant tumor growth inhibition and antimetastasis capability, as well as good biocompatibility. We further reveal that the underlying molecular antimetastatic mechanisms involve downregulation of proteins facilitating metastasis and upregulation of paxillin, the key protein of focal adhesion, in primary tumors.

6.
Bioorg Chem ; 97: 103693, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32120079

RESUMO

Millettia pulchra is a renowned anti-inflammatory herbal medicine in southeast provinces of China. However, the underlying anti-inflammation mechanism remained incompletely understood. Herein, four new isoflavones, pulvones A-D and eleven reported constituents were isolated from the stems of Millettia pulchra with their structures being elucidated by HRMS and NMR analysis. The anti-inflammatory activities of pulvones A and C were further evaluated due to the better inhibitory activity on nitric oxide production in LPS-stimulated RAW264.7 cells and no obvious cytotoxicity to RAW264.7 cells. Western blot showed that pulvones A significantly decreased the levels of iNOS and COX-2 proteins and pulvones C only decreased the level of iNOS protein. ELISA analysis demonstrated that pulvones A inhibited the production of both interleukin-6 (IL-6) and IL-1ß while pulvones C showed better suppression effect on IL-1ß production in LPS-stimulated RAW264.7 cells. Then, their potential inhibitory effects on NF-κB pathway were tested in LPS-stimulated RAW264.7 cells. Immunofluorescence and western blot assay showed that pulvones A and C reduced the nuclear translocation of NF-κB(p65) and interrupted IκB phosphorylation. The ADP-Glo™ kinase assay showed pulvones A and C could directedly inhibit the IKKß kinase activity with the inhibitory rate of 40%, which were also verified by docking study. Collectively, these results suggested that pulvones A and C's anti-inflammatory effects were relevant to the interruption of NF-κB activation by inhibiting IKKß kinase.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Isoflavonas/farmacologia , Macrófagos/efeitos dos fármacos , Millettia/química , Animais , Anti-Inflamatórios/química , Inflamação/imunologia , Inflamação/patologia , Isoflavonas/química , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
Phytother Res ; 32(12): 2428-2435, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30123958

RESUMO

Millepachine (MIL), a bioactive natural chalcone from Chinese herbal medicine Millettia pachycarpa Benth, exhibits strong antitumor effects against many human cancer cells both in vitro and in vivo. In this study, we found that MIL significantly inhibited the proliferation of cisplatin-resistant A2780CP cells via inducing obvious G2/M arrest and apoptosis and down-regulating the activity of topoisomerase II protein. We further found that the mechanism by which MIL showed good antitumor effects in cisplatin-resistant human ovarian cancer was associated with inhibiting the expression of ATP-binding cassette transporters in cisplatin-resistant A2780CP cells. Importantly, MIL did not only significantly inhibit the tumor growth in cisplatin-sensitive A2780S xenograft model, with an inhibitory rate of 73.21%, but also inhibited the tumor growth in the cisplatin-resistant A2780CP xenograft model, with an inhibitory rate of 65.68% (p < 0.001 vs. control; p < 0.001 vs. DDP). In addition, MIL did not induce acquired drug resistance in A2780S tumor-bearing mice with an inhibitory rate of 60.03%. The promising in vitro and in vivo performance indicated that MIL exhibited potential significance for drug research and development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Carcinoma Epitelial do Ovário/tratamento farmacológico , Chalconas/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Chalconas/farmacocinética , Cisplatino/farmacocinética , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Inativação Metabólica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Food ; 21(9): 849-857, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30136914

RESUMO

Ginsenoside Rg3, a bioactive constituent from Panax ginseng, is a worldwide well-known traditional Chinese medicine used as a tonic. It also has good antitumor activity by inhibiting tumors metastasis. Tumor metastasis is a high risk in thyroid cancer. However, the effect and molecular mechanism underlying the antimetastatic activity of Rg3 in thyroid cancer have not been reported. In our study, we found that Rg3 inhibited the growth of thyroid cancer in vitro and in vivo and significantly inhibited metastasis of thyroid cancer. Rg3 apparently inhibited the migration and invasion in four papillary thyroid cancer (PTC) cells (TPC-1, BCPAP, C643, and Ocut-2c cells) and pulmonary metastasis in lung metastasis model of C643 cells in nude mice. We further found that a possible mechanism of Rg3 inhibiting thyroid cancer cells metastasis was associated with inhibiting cells actin skeleton function. Rg3 inhibited lamellipodia formation and induced microspike formation by inhibiting Rho GTPase in thyroid cancer cells. Rg3 decreased the levels of Rac-1 and Cdc42 proteins. In addition, Rg3 decreased the expression levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 proteins in four thyroid cancer cells. The results that Rg3 remarkably inhibited the expression of vascular endothelial growth factor-C (VEGF-C) protein in PTC cells and VEGF-A protein in anaplastic thyroid cancer (ATC) cells and decreased the staining of CD31 in PTC and ATC tumors hinted that Rg3 might inhibit the lymph node metastasis in PTC and angiogenesis in ATC. These studies suggested that Rg3 might be a useful agent for the treatment of metastatic thyroid cancers.


Assuntos
Actinas/metabolismo , Antineoplásicos Fitogênicos/administração & dosagem , Ginsenosídeos/administração & dosagem , Neoplasias da Glândula Tireoide/tratamento farmacológico , Actinas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Panax/química , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
J Pharm Biomed Anal ; 153: 186-192, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29499462

RESUMO

Natural products and their derivatives have historically been invaluable as a source of therapeutic agents. Honokiol, as a well-known natural product in Chinese herbal medicine Houpu, is finally being studied in a Phase I clinical trial (CTR20170822) in patients with Advanced Non-Small Cell Lung Cancer (NSCLS) in China this year. During the honokiol liposome formulation process, five major impurities were present in the range of 0.05-0.1% based on the HPLC analysis. These five major impurities were obtained from the forced degradation product of honokiol through countercurrent chromatography and prep-HPLC. The structure were elucidated with 1H NMR, 13C NMR, 2D NMR and MS spectral data. The proposed HPLC method was validated for specificity, linearity (concentration range 0.01-1.62, 0.003-0.96, 0.05-7.98, 0.04-6.52, 0.03-5.18 µg/ml for impurities I-V respectively, R2 > 0.9988), accuracy (99.11-100.67%), precision (CV < 1.6%), and sensitivity (LOD 3.3, 0.1, 16.7, 13.3, 10.0 ng/ml for impurities I-V respectively). The validated method was employed in the further study of the honokiol drug substance.


Assuntos
Antineoplásicos/química , Compostos de Bifenilo/química , Lignanas/química , Produtos Biológicos/química , China , Cromatografia Líquida de Alta Pressão/métodos , Ensaios Clínicos como Assunto , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
10.
Phytother Res ; 32(4): 733-740, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29368443

RESUMO

Development of agents to overcome multidrug resistance (MDR) is one of the important strategies in cancer chemotherapy, and P-glycoprotein (P-gp) correlates with the degree of resistance. As a naturally occurring isoflavone, whether barbigerone (BA) could reverse MDR, is unknown. In this paper, we evaluated effects of BA on reversing P-gp mediated MDR of adriamycin (ADR)-resistant human breast carcinoma (MCF-7/ADR) cells. BA (0.5 µM) treatment showed strong potency to increase ADR cytotoxicity toward MCF-7/ADR cells. It was also demonstrated that BA time- and dose-dependently increased accumulations of ADR and reduced the efflux in MCF-7/ADR cells, pretreatment of these cells with BA might relocalized ADR to the nuclei. Furthermore, the results also revealed that BA did not affect P-gp, but alter P-gp ATPase activity. Intravenous administration of BA significantly increased anticancer efficacy of ADR to MCF-7/ADR xenograft model in nude mice. These results revealed that BA might reverse P-gp mediated MDR through inhibition of ATPase activity, which indicated a novel use of BA as a potent candidate for cancer chemotherapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Isoflavonas/uso terapêutico , Animais , Neoplasias da Mama/patologia , Humanos , Isoflavonas/farmacologia , Células MCF-7 , Camundongos , Camundongos Nus
11.
J Sep Sci ; 38(3): 523-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25413585

RESUMO

Millettia griffithii is a unique Chinese plant located in the southern part of Yunnan Province. Up to now, there is no report about its phytochemical or related bioactivity research. In our previous study, the n-hexane crude extract of Millettia griffithii revealed significant anti-inflammatory activity at 100 µg/mL, inspiring us to explore the anti-inflammatory constituents. Four fractions (I, II, III, and A) were fractionated from n-hexane crude extract by high-performance counter-current chromatography with solvent system composed of n-hexane/ethyl acetate/methanol/water (8:9:8:9, v/v) and then were investigated for the potent anti-inflammatory activity. Fraction A, with the most potent inhibitory activity was further separated to give another four fractions (IV, V, VI, and B) with solvent system composed of n-hexane/ethyl acetate/methanol/water (8:4:8:4, v/v). Compound V and fraction B exhibited remarkable anti-inflammatory activity with nitric oxide inhibitory rate of 80 and 65%, which was worth further fractionation. Then, three fractions (VII, VIII, and IX) were separated from fraction B with a solvent system composed of n-hexane/ethyl acetate/methanol/water (8:1:8:1, v/v), with compound VIII demonstrating the most potent inhibitory activity (80%). Finally, the IC50 values of compound V and VIII were tested as 38.2 and 14.9 µM. The structures were identified by electrospray ionization mass spectrometry and(1)H and (13)C NMR spectroscopy.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Millettia/química , Extratos Vegetais/química , Animais , Anti-Inflamatórios não Esteroides/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Relação Dose-Resposta a Droga , Flavonoides/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
12.
Am J Chin Med ; 42(4): 949-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25004885

RESUMO

The present study was designed to investigate the in vitro and in vivo anti-inflammatory activity of flavonoids isolated from Millettia pachycarpa Benth. The seeds of M. pachycarpa Benth were extracted with ethanol and subjected to chromatographic separation for the isolation of bioactive compounds. Their structures were elucidated by spectroscopic methods. The anti-inflammatory activity of the compounds was investigated by evaluating the inhibition ability of NO production, iNOS activity and iNOS protein expression induced by LPS-stimulated RAW264.7 macrophages in vitro and the carrageenan-induced hind paw edema model in vivo. Molecular docking simulation was also employed to obtain the binding parameters in the binding pocket of iNOS. Thirteen compounds (1-13) were isolated from Chinese herbal medicine M. pachycarpa Benth. Among them, 4-hydroxylonchocarpin (6) and deguelin (7) exhibited remarkable inhibitory rates of 66.5% and 57.7%, respectively, compared with that of 52.5% of indomethacin in LPS-induced macrophages cells. 4-hydroxylonchocarpin (6) with low toxicity (IC50 > 100 µm) exhibited better inhibitory effects to positive control of 1400W on iNOS activity at the concentration of 10 µm. Western blot assay revealed that 4-hydroxylonchocarpin (6) inhibited iNOS protein expression in RAW264.7 cells and molecular docking simulation showed that 4-hydroxylonchocarpin (6) fit well into the binding pocket of iNOS. In the carrageenan-induced paw edema model, our data revealed that the anti-inflammatory potential of 4-hydroxylonchocarpin (6) at 10 mg/kg showed comparable inhibitory ability to indomethacin at 5 h while a higher concentration of 4-hydroxylonchocarpin (6) at 50 mg/kg showed higher inhibitory activity than indomethacin, which was further confirmed by plasma levels of nitrite. The overall results suggest that 4-hydroxylonchocarpin (6) might be used as a potential therapeutic agent for inflammation-associated disorders.


Assuntos
Anti-Inflamatórios , Edema/tratamento farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Lipopolissacarídeos , Macrófagos/metabolismo , Millettia/química , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Fitoterapia , Rotenona/análogos & derivados , Animais , Carragenina , Células Cultivadas , Depressão Química , Modelos Animais de Doenças , Edema/induzido quimicamente , Flavonas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos ICR , Rotenona/isolamento & purificação , Rotenona/farmacologia , Rotenona/uso terapêutico , Sementes
13.
Fitoterapia ; 95: 154-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641946

RESUMO

Bioactivity-guided isolation of the EtOAc extract of the stems of Millettia dielsiana Harms yielded two new isoflavones together with nine known ones. Their structures were elucidated by analysis of the spectroscopic data including 2D NMR. All of the isolates were evaluated for their potential to inhibit the LPS-induced production of nitric oxide and TNF-α in murine macrophage RAW 264.7 cells. Among the tested compounds, Millesianin C (1) had the most potent anti-inflammatory effect decreasing NO production similar to that of dexamethasone and decreasing TNF-α secretion better than that of dexamethasone. Their structure-activity relationship was also analyzed.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Flavonoides/isolamento & purificação , Isoflavonas/isolamento & purificação , Millettia/química , Óxido Nítrico/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Isoflavonas/química , Isoflavonas/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos , Estrutura Molecular , Óxido Nítrico/análise , Caules de Planta/química , Plantas Medicinais , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
14.
Fitoterapia ; 83(8): 1402-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22902267

RESUMO

The aim of this study is to investigate the cytotoxic and apoptotic effects of constituents from the seeds of Millettia pachycarpa Benth. Fourteen compounds (1-14) including one novel chalcone (10) were isolated as active principles from Chinese herbal medicine M. pachycarpa Benth. Their structures were identified by using spectroscopic methods. All isolates were then evaluated for their cytotoxic effects against several cancer cell lines (HepG2, C26, LL2 and B16) with cisplatin as a positive control. And their apoptosis-inducing effects were tested against HeLa-C3 cells with taxol as a positive control. Both studies showed that compounds 1, 2, 7 and 10 demonstrated significant cytotoxic and apoptotic effects against cancer cells. Moreover, in the apoptosis assay the novel chalcone (10) showed strong apoptosis inducing effects at a concentration of 2µM within 36h. It was found to be the most potent apoptotic inducer of the compounds isolated from M. pachycarpa Benth.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Millettia/química , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA