Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(1): 100-109, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403343

RESUMO

Hawthorn has the efficacy of eliminating turbidity and lowering the blood lipid level, and it is used for treating hyperlipidemia in clinic. However, the bioactive components of hawthorn are still unclear. In this study, the spectrum-effect relationship was employed to screen the bioactive components of hawthorn in the treatment of hyperlipidemia, and then the bioactive components screened out were verified in vivo. Furthermore, the quality control method for hawthorn was developed based on liquid chromatography-mass spectrometry(LC-MS). The hyperlipidemia model of rats was built, and different polar fractions of hawthorn extracts and their combinations were administrated by gavage. The effects of different hawthorn extract fractions on the total cholesterol(TC), triglycerides(TG), and low-density lipoprotein-cholesterol(LDL-C) in the serum of model rats were studied. The orthogonal projections to latent structures(OPLS) algorithm was used to establish the spectrum-effect relationship model between the 24 chemical components of hawthorn and the pharmacodynamic indexes, and the bioactive components were screened out and verified in vivo. Finally, 10 chemical components of hawthorn, including citric acid and quinic acid, were selected to establish the method for evaluating hawthorn quality based on LC-MS. The results showed that different polar fractions of hawthorn extracts and their combinations regulated the TG, TC, and LDL-C levels in the serum of the model rats. The bioactive components of hawthorn screened by the OPLS model were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, and quinic acid. The 10 chemical components of hawthorn, i.e., citric acid, quinic acid, rutin, gallic acid, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, malic acid, vanillic acid, neochlorogenic acid, and fumaric acid were determined, with the average content of 38, 11, 0.018, 0.009 5, 0.037, 0.017, 8.1, 0.009 5, 0.073, and 0.98 mg·g~(-1), respectively. This study provided a scientific basis for elucidating the material basis of hawthorn in treating hyperlipidemia and developed a content determination method for evaluating the quality of hawthorn.


Assuntos
Crataegus , Hiperlipidemias , Ratos , Animais , Crataegus/química , LDL-Colesterol , Ácido Quínico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rutina/química , Lipídeos , Hiperlipidemias/tratamento farmacológico , Controle de Qualidade , Glucosídeos , Ácido Cítrico
2.
Zhongguo Zhong Yao Za Zhi ; 48(4): 958-965, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872266

RESUMO

This study was aimed at identifying the bioactive components of the crude and stir-baked hawthorn for invigorating spleen and promoting digestion, respectively, to clarify the processing mechanism of hawthorn by applying the partial least squares(PLS) algorithm to build the spectrum-effect relationship model. Firstly, different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions were prepared, respectively. Then, the contents of 24 chemical components were determined by ultra-high performance liquid chromatography-mass spectrometry. The effects of different polar fractions of crude hawthorn and stir-baked hawthorn aqueous extracts and combinations of different fractions were evaluated by measuring the gastric emptying rate and small intestinal propulsion rate. Finally, the PLS algorithm was used to establish the spectrum-effect relationship model. The results showed that there were significant differences in the contents of 24 chemical components for different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions, and the gastric emptying rate and small intestinal propulsion rate of model rats were improved by administration of different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions. The bioactive components of crude hawthorn identified by PLS models were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, neochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, malic acid, quinic acid and fumaric acid, while neochlorogenic acid, cryptochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, quinic acid and fumaric acid were the bioactive components of stir-baked hawthorn. This study provided data support and scientific basis for identifying the bioactive components of crude and stir-baked hawthorn, and clarifying the processing mechanism of hawthorn.


Assuntos
Crataegus , Baço , Animais , Ratos , Ácido Quínico , Análise dos Mínimos Quadrados , Ácido Vanílico , Algoritmos , Digestão
3.
J Sep Sci ; 45(15): 2924-2934, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35699087

RESUMO

Hawthorn, one of the widely-used Chinese herbal medicines, has been used to treat blood stasis syndrome in the clinic, but its blood-activating components are unclear. This study combined the ultra-high-performance liquid chromatography-quadruple exactive-orbitrap mass spectrometry with chemometrics to identify the blood-activating components of hawthorn. Different polar fractions of hawthorn aqueous extracts were extracted and mixed to prepare 14 samples. The contents of 25 chemical components for 14 samples were determined by the proposed quantitative method which was validated in terms of linearity, precision, stability, repeatability, and recovery, while the blood-activating effect was evaluated by measuring the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels. Then the partial least squares model was established on the spectrum-effect relationship. The result showed that vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, gallic acid, and fumaric acid could reduce the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels in blood stasis model rats, and these components were the blood-activating components of hawthorn. This study provided a scientific basis for clarifying the blood-activating components of hawthorn, and the spectrum-effect approach proved to be an effective approach to discovering the bioactive components of Chinese herbal medicines.


Assuntos
Crataegus , Medicamentos de Ervas Chinesas , Animais , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Crataegus/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fibrinogênio , Ratos , Espectrometria de Massas em Tandem/métodos
4.
J Sep Sci ; 45(11): 1839-1846, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35318796

RESUMO

Hawthorn, one of the widely-used traditional Chinese medicines, has been used to treat dyspepsia, hyperlipidemia, and cardiovascular disease in the clinic. Our previous study revealed that gallic acid, neochlorogenic acid, cryptochlorogenic acid, vitexin, and quercetin were active components of hawthorn. In this study, a simple, precise, and reliable liquid chromatography-mass spectrometry method was developed for the simultaneous quantification of five components in rat serums. The separation was achieved on the Hypersil GOLD C18 column, and the mobile phases consisted of 0.1% acetic acid water and methanol at a flow rate of 0.3 mL/min. The mass spectrometry data acquisition was performed on Q-Extractive-Orbitrap mass spectrometry with an electrospray ionization source in negative ion mode. The proposed liquid chromatography-mass spectrometry method was validated in terms of linearity, intra- and inter-precision, accuracy, recoveries, matrix effects, and stability. Then this newly proposed liquid chromatography-mass spectrometry method was successfully applied to a pharmacokinetic study on rats after oral administration of hawthorn aqueous extracts. This study provided relevant information on the pharmacokinetics of active components of hawthorn and explained the underlying mechanism of their bioactivity.


Assuntos
Crataegus , Medicamentos de Ervas Chinesas , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA