Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 20(6): 1054-1068, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114063

RESUMO

The pollen wall exine provides a protective layer for the male gametophyte and is largely composed of sporopollenin, which comprises fatty acid derivatives and phenolics. However, the biochemical nature of the external exine is poorly understood. Here, we show that the male sterile line 1355A of cotton mutated in NO SPINE POLLEN (GhNSP) leads to defective exine formation. The GhNSP locus was identified through map-based cloning and confirmed by genetic analysis (co-segregation test and allele prediction using the CRISPR/Cas9 system). In situ hybridization showed that GhNSP is highly expressed in tapetum. GhNSP encodes a polygalacturonase protein homologous to AtQRT3, which suggests a function for polygalacturonase in pollen exine formation. These results indicate that GhNSP is functionally different from AtQRT3, the latter has the function of microspore separation. Biochemical analysis showed that the percentage of de-esterified pectin was significantly increased in the 1355A anthers at developmental stage 8. Furthermore, immunofluorescence studies using antibodies to the de-esterified and esterified homogalacturonan (JIM5 and JIM7) showed that the Ghnsp mutant exhibits abundant of de-esterified homogalacturonan in the tapetum and exine, coupled with defective exine formation. The characterization of GhNSP provides new understanding of the role of polygalacturonase and de-esterified homogalacturonan in pollen exine formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Poligalacturonase , Fertilidade , Pectinas/metabolismo , Pólen/genética , Pólen/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo
2.
J Biol Chem ; 294(17): 7057-7067, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30862676

RESUMO

Cotton (Gossypium spp.) is one of the most important economic crops and exhibits yield-improving heterosis in specific hybrid combinations. The genic male-sterility system is the main strategy used for producing heterosis in cotton. To better understand the mechanisms of male sterility in cotton, we carried out two-dimensional electrophoresis (2-DE) and label-free quantitative proteomics analysis in the anthers of two near-isogenic lines, the male-sterile line 1355A and the male-fertile line 1355B. We identified 39 and 124 proteins that were significantly differentially expressed between these two lines in the anthers at the tetrad stage (stage 7) and uninucleate pollen stage (stage 8), respectively. Gene ontology-based analysis revealed that these differentially expressed proteins were mainly associated with pyruvate, carbohydrate, and fatty acid metabolism. Biochemical analysis revealed that in the anthers of line 1355A, glycolysis was activated, which was caused by a reduction in fructose, glucose, and other soluble sugars, and that accumulation of acetyl-CoA was increased along with a significant increase in C14:0 and C18:1 free fatty acids. However, the activities of pyruvate dehydrogenase and fatty acid biosynthesis were inhibited and fatty acid ß-oxidation was activated at the translational level in 1355A. We speculate that in the 1355A anther, high rates of glucose metabolism may promote fatty acid synthesis to enable anther growth. These results provide new insights into the molecular mechanism of genic male sterility in upland cotton.


Assuntos
Ácidos Graxos/metabolismo , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Pólen , Proteômica , Acetilcoenzima A/metabolismo , Ácidos Carboxílicos/metabolismo , Glicólise , Oxirredução , Ácido Pirúvico/metabolismo
3.
Plant Mol Biol ; 97(6): 537-551, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30066309

RESUMO

Key message This research based on RNA-seq, biochemical, and cytological analyses sheds that ROS may serve as important signaling molecules of cytoplasmic male sterility in CMS-D8 cotton. To understand the mechanism of cytoplasmic male sterility in cotton (Gossypium hirsutum), transcriptomic, cytological, and biochemical analysis were performed between the cytoplasmic male sterility CMS-D8 line, Zhong41A, and its maintainer line Zhong41B. A total of 2335 differentially expressed genes (DEGs) were identified in the CMS line at three different stages of anther development. Bioinformatics analysis of these DEGs indicated their relationship to reactive oxygen species (ROS) homeostasis, including reduction-oxidation reactions and the metabolism of glutathione and ascorbate. At the same time, DEGs associated with tapetum development, especially the transition to secretory tapetum, were down-regulated in the CMS line. Biochemical analysis indicated that the ability of the CMS line to eliminate ROS was decreased, which led to the rapid release of H2O2. Cytological analysis revealed that the most crucial defect in the CMS line was the abnormal tapetum. All these results are consistent with the RNA sequencing data. On the basis of our findings, we propose that ROS act as signal molecules, which are released from mitochondria and transferred to the nucleus, triggering the formation of abnormal tapetum.


Assuntos
Gossypium/genética , Perfilação da Expressão Gênica/métodos , Gossypium/citologia , Gossypium/metabolismo , Infertilidade/genética , Microscopia Eletrônica de Transmissão , Oxirredução , Pólen/genética , Pólen/fisiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 5: 9608, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26043720

RESUMO

To understand the mechanisms of male sterility in cotton (Gossypium spp.), combined histological, biochemical and transcription analysis using RNA-Seq was carried out in the anther of the single-gene recessive genic male sterility system of male sterile line 1355A and male fertile line 1355B, which are near-isogenic lines (NILs) differing only in the fertility trait. A total of 2,446 differentially expressed genes were identified between the anthers of 1355AB lines, at three different stages of development. Cluster analysis and functional assignment of differentially expressed genes revealed differences in transcription associated with pollen wall and anther development, including the metabolism of fatty acids, glucose, pectin and cellulose. Histological and biochemical analysis revealed that a major cellular defect in the 1355A was a thicker nexine, consistent with the RNA-seq data, and further gene expression studies implicated differences in fatty acids synthesis and metabolism. This study provides insight into the phenotypic characteristics and gene regulatory network of the genic male sterile line 1355A in upland cotton.


Assuntos
Parede Celular , Gossypium/genética , Infertilidade das Plantas/genética , Pólen/genética , Parede Celular/genética , Parede Celular/metabolismo , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/metabolismo , Fenótipo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA