Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 125: 155346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237511

RESUMO

BACKGROUND: Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE: A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS: Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS: In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION: The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.


Assuntos
Injúria Renal Aguda , Saponinas , Sepse , Triterpenos , Masculino , Camundongos , Animais , Lipocalina-2/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/induzido quimicamente , Sepse/complicações , Sepse/tratamento farmacológico , RNA Interferente Pequeno , Inflamação
2.
Fitoterapia ; 172: 105783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110127

RESUMO

Eight nitrogenous compounds including five undescribed ones, aeswilnitrousol A (1), aeswilnitrousosides BD (2-4), and 6-(2-hydroxy-3-methylbutylamino)-8-oxoadenine (5) were isolated from the seeds of Aesculus wilsonii. Their structures and absolute configurations were established based on spectroscopic determination, calculated electronic circular dichroism (ECD) analysis, as well as chemical reaction methods. Among the three known compounds, 7 and 8 were obtained from the Aesculus genus for the first time, and 6 was gained from this plant initially. The 13C NMR data of 7 and 8 were reported for the first time. Moreover, the inhibitory effect of all the isolates against LPS-induced nitric oxide production in RAW264.7 macrophages was evaluated. As a result, compounds 2 and 8 exhibited anti-inflammatory activity in a concentration-dependent manner at 10, 25, and 50 µM.


Assuntos
Aesculus , Estrutura Molecular , Aesculus/química , Compostos de Nitrogênio/análise , Anti-Inflamatórios/farmacologia , Sementes/química , Óxido Nítrico
3.
Fitoterapia ; 171: 105694, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778669

RESUMO

Twenty-four aromatic compounds including five novel ones, dolilabphenosides A (1), B1 (2), B2 (3), C1 (4), and C2 (5) were obtained from the seeds of Dolichos lablab L. Their structures were established based on spectroscopic analyses and chemical reactions. Among the known compounds, 9, 10, 14, 17, 19, and 22-24 were gained from the family Leguminosae for the first time, and 6, 8, 11-13, 15, 16, 18, 20, as well as 21 were firstly identified from Dolichos genus. Moreover, the inhibitory effect evaluation of all the isolates against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages suggested that compounds 1-3, 6, 7, 11-15, 17, 20, 21, 23, 24 exhibited anti-inflammatory activity in a concentration-dependent manner. Moreover, the novel compounds, dolilabphenosides A (1), B1 (2), B2 (3) were found to inhibit the secretion of inflammatory cytokine IL-1ß.


Assuntos
Dolichos , Fabaceae , Dolichos/química , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Sementes/química
4.
J Nat Med ; 77(4): 867-879, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37433989

RESUMO

Hyperuricemia is an independent risk factor for chronic kidney disease. We have previously showed the uric-acid-lowering effect of Eurycoma longifolia Jack, yet the renal protective effect and mechanism of E. longifolia remain obscure. The mouse model of hyperuricemic nephropathy was induced by adenine combined with potassium oxonate in male C57BL/6 J mice. E. Longifolia alkaloid components could reduce the level of serum uric acid by regulating the expression of hepatic phosphoribosyl pyrophosphate synthase (PRPS), hypoxanthine-guanine phosphoribosyl transferase (HPRT), and renal urate transporter organic anion transporter 1 (OAT1) and ATP-binding box subfamily G member 2 (ABCG2) in HN mice. Additionally, E. Longifolia alkaloid components alleviated renal injury and function caused by hyperuricemia, which was characterized by improving renal histopathology, reducing urea nitrogen and creatinine levels. E. Longifolia alkaloid components treatment could reduce the secretion of pro-inflammatory factors by inhibiting the activation of NF-κB and NLRP3 inflammatory signaling pathways, including tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-1 ß (IL-1ß), and regulated activated normal T cell expression and secretion proteins (RANTES). Meanwhile, E. longifolia alkaloid components improved renal fibrosis, inhibited the transformation of calcium-dependent cell adhesion molecule E (E-cadherin) to α-smooth muscle actin (α-SMA) transformation, and decreased collagen 1 expression in HN mice.


Assuntos
Eurycoma , Hiperuricemia , Masculino , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Camundongos Endogâmicos C57BL , Rim/metabolismo , Rim/patologia , Inflamação/metabolismo
5.
Phytomedicine ; 96: 153850, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34785103

RESUMO

BACKGROUND: An elevated level of blood uric acid (UA) leads to serious damages to human health. In clinic, xanthine oxidase inhibitor is commonly used to reduce uric acid production. However, UA excretion promotion drug is rare. Our previous study demonstrated that the 70% ethanolic extract of stem of Eurycoma longifolia could effectively increase UA excretion and decrease blood level of UA in hyperuricemia animal model. In this paper, we tried to find active substance on UA regulation from E. longifolia. METHODS: The constituents of stem from E. longifolia were isolated and analyzed by chemical and spectral methods. Ultra Performance Liquid Chromatography was applied to measure the concentrations of UA in serum and urine. H&E staining was used to characterize renal histopathological changes. The protein and mRNA expressions of UA transporters were measured by western blot and quantitative real-time PCR analysis. RESULTS: Ten kinds of quassinoids were isolated from stem of E. longifolia, and the structures were identified. Pharmacological research revealed the major component, eurycomanol (5-20 mg/kg, p.o.) significantly decreased serum UA level and increased 24 h clearance of uric acid in potassium oxonate and adenine induced hyperuricemic mice. Eurycomanol ameliorated UA induced kidney histological injury, inhibited hepatic purine synthesis through decreasing phosphoribosyl pyrophosphate synthetase, promoted UA excretion by modulation of renal and intestinal urate transporters, such as GLUT9, ABCG2, OAT1, and NPT1. CONCLUSION: The results showed eurycomanol from E. longifolia can promote UA excretion through kidney and intestine, decrease hepatic purine synthesis and further keep UA homeostasis, suggesting that eurycomanol has the potential to be developed into a novel drug for the treatment of under-excretion type hyperuricemia.


Assuntos
Hiperuricemia , Quassinas , Animais , Hiperuricemia/tratamento farmacológico , Rim , Camundongos , Purinas , Ácido Úrico
6.
Planta Med ; 88(7): 559-569, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34098585

RESUMO

Ulcerative colitis has been recognized as a chronic inflammatory disease predominantly disturbing the colon and rectum. Clinically, the aminosalicylates, steroids, immunosuppressants, and biological drugs are generally used for the treatment of ulcerative colitis at different stages of disease progression. However, the therapeutic efficacy of these drugs does not satisfy the patients due to the frequent drug resistance. Herein, we reported the anti-ulcerative colitis activity of desmethylbellidifolin, a xanthone isolated from Gentianella acuta, in dextran sulfate sodium-induced colitis in mice. C57BL/6 mice were treated with 2% dextran sulfate sodium in drinking water to induce acute colitis. Desmethylbellidifolin or balsalazide sodium was orally administrated once a day. Biological samples were collected for immunohistological analysis, intestinal barrier function evaluation, cytokine measurement, and gut microbiota analysis. The results revealed that desmethylbellidifolin alleviated colon shortening and body weight loss in dextran sulfate sodium-induced mice. The disease activity index was also lowered by desmethylbellidifolin after 9 days of treatment. Furthermore, desmethylbellidifolin remarkably ameliorated colonic inflammation through suppressing the expression of interleukin-6 and tumor necrosis factor-α. The intestinal epithelial barrier was strengthened by desmethylbellidifolin through increasing levels of occludin, ZO-1, and claudins. In addition, desmethylbellidifolin modulated the gut dysbiosis induced by dextran sulfate sodium. These findings suggested that desmethylbellidifolin effectively improved experimental ulcerative colitis, at least partly, through maintaining intestinal barrier integrity, inhibiting proinflammatory cytokines, and modulating dysregulated gut microbiota.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Xantenos
7.
Engineering (Beijing) ; 19: 139-152, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729244

RESUMO

Traditional Chinese medicine (TCM) has been successfully applied worldwide in the treatment of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the pharmacological mechanisms underlying this success remain unclear. Hence, the aim of this review is to combine pharmacological assays based on the theory of TCM in order to elucidate the potential signaling pathways, targets, active compounds, and formulas of herbs that are involved in the TCM treatment of COVID-19, which exhibits combatting viral infections, immune regulation, and amelioration of lung injury and fibrosis. Extensive reports on target screening are elucidated using virtual prediction via docking analysis or network pharmacology based on existing data. The results of these reports indicate that an intricate regulatory mechanism is involved in the pathogenesis of COVID-19. Therefore, more pharmacological research on the natural herbs used in TCM should be conducted in order to determine the association between TCM and COVID-19 and account for the observed therapeutic effects of TCM against COVID-19.

8.
Biomolecules ; 10(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877639

RESUMO

Constipation is a common bowel disease in adults with the symptoms of dry stool or difficulty passing stool. Compared with medication therapy, patients show more compliance with the diet therapy, and thus the diet therapy normally exhibits better therapeutic effect. Allium mongolicum Regel s a perennial herb of Liliaceae native to Mongolia, Kazakhstan, and China, which is traditionally used for constipation. In this paper, we partly clarify the effectiveness of A. mongolicum on constipation from two aspects, including maintaining colon water content and increasing intestinal transit. In loperamide-induced constipation mice model, nine days oral administration of A. mongolicum 50% ethanolic extract increased luminal side water content and regulated intestinal movement rhythm to normalize stools. The activity at least partly related to down-regulation of colon aquaporins 3 (AQP3) expression, and up-regulation and activation of G protein alpha (Gα) and phosphoinositide 3-kinases (PI3K). Further, activities on intestine movements were tested using compounds isolated from A. mongolicum. Three kinds of major flavonoids significantly increased cellular calcium flux in HCT116 cells and promoted mice intestine smooth muscle contraction. The activity may be related to M choline receptor, µ opioid receptor, 5-HT3 receptor, and inositol 1,4,5-trisphosphate (IP3) receptor.


Assuntos
Allium/química , Constipação Intestinal/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Aquaporina 3/genética , Aquaporina 3/metabolismo , China , Constipação Intestinal/genética , Constipação Intestinal/metabolismo , Constipação Intestinal/fisiopatologia , Medicamentos de Ervas Chinesas/química , Flavonoides/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR
9.
Drug Metab Dispos ; 44(5): 720-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26965985

RESUMO

Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in Western countries. Glycyrrhizin (GL), a potent hepatoprotective constituent extracted from the traditional Chinese medicine liquorice, has potential clinical use in treating APAP-induced liver failure. The present study determined the hepatoprotective effects and underlying mechanisms of action of GL and its active metabolite glycyrrhetinic acid (GA). Various administration routes and pharmacokinetics-pharmacodynamics analyses were used to differentiate the effects of GL and GA on APAP toxicity in mice. Mice deficient in cytochrome P450 2E1 enzyme (CYP2E1) or receptor interacting protein 3 (RIPK3) and their relative wild-type littermates were subjected to histologic and biochemical analyses to determine the potential mechanisms. Hepatocyte death mediated by tumor necrosis factorα(TNFα)/caspase was analyzed by use of human liver-derived LO2 cells. The pharmacokinetics-pharmacodynamics analysis using various administration routes revealed that GL but not GA potently attenuated APAP-induced liver injury. The protective effect of GL was found only with intraperitoneal and intravenous administration and not with gastric administration. CYP2E1-mediated metabolic activation and RIPK3-mediated necroptosis were unrelated to GL's protective effect. However, GL inhibited hepatocyte apoptosis via interference with TNFα-induced apoptotic hepatocyte death. These results demonstrate that GL rapidly attenuates APAP-induced liver injury by directly inhibiting TNFα-induced hepatocyte apoptosis. The protective effect against APAP-induced liver toxicity by GL in mice suggests the therapeutic potential of GL for the treatment of APAP overdose.


Assuntos
Acetaminofen/efeitos adversos , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ácido Glicirrízico/farmacologia , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ativação Metabólica/efeitos dos fármacos , Animais , Linhagem Celular , Citocromo P-450 CYP2E1/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
10.
Chin J Nat Med ; 13(11): 815-822, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26614456

RESUMO

As a computer-assisted approach, molecular docking has been universally applied in drug research and development and plays an important role in the investigation and evaluation of herbal medicines. Herein, the method was used to estimate the pharmacodynamics of Mai-Luo-Ning injection, a traditional Chinese compound herbal prescription. Through investigating the interactions between several important proteins in cardiovascular system and characteristic components of the formula, its effect on cardiovascular protection was evaluated. Results showed the differences in the interactions between each component and the selected target proteins and revealed the possible mechanisms for synergistic effects of various characteristic components on cardiovascular protection. The study provided scientific evidence supporting the mechanistic study of the interactions among multi-components and targets, offering a general approach to investigating the pharmacodynamics of complicated materials in compound herbal prescriptions.


Assuntos
Fármacos Cardiovasculares/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Sistema Cardiovascular/metabolismo , Sinergismo Farmacológico , Enzimas/metabolismo , Humanos , Simulação de Acoplamento Molecular
11.
J Chromatogr A ; 1303: 39-47, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23838303

RESUMO

Identification of nontarget compounds in complex mixtures is of significant importance in various scientific fields. On the basis of the universal property that the compounds in complex mixtures can be classified to various analogous families, this study presents a general strategy for the rapid identification of nontarget compounds from complex matrixes using herbal medicine as an example. The proposed strategy consists of three sequential steps. First, a blank control sample is prepared for the purpose of removing interferences in the complex matrixes via automatic chromatographic and mass spectrometric data comparisons. Second, the diagnostic ions guided bridging network strategy is developed for the rapid classification of analogous compounds and structural characterizations. Finally, a quantitative structure retention relationship (QSRR) is built to validate the identifications and to differentiate isomers. Using this strategy, we have successfully identified a total of 45 organic acids from Mai-Luo-Ning and Flos Lonicerae injection, and 46 ginsenosides from Shen-Mai injection samples. The QSRR approach enabled a successful differentiation of most isomers. The proposed strategy will be expected to be applicable to the identification of nontarget compounds in complex mixtures.


Assuntos
Cromatografia/métodos , Misturas Complexas/química , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas/métodos , Plantas Medicinais/química , Misturas Complexas/isolamento & purificação , Misturas Complexas/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Isomerismo , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA