Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(4): e14520, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38018559

RESUMO

AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.


Assuntos
Ansiolíticos , Dor Crônica , Eletroacupuntura , Ratos , Animais , Ansiolíticos/farmacologia , Dor Crônica/induzido quimicamente , Dor Crônica/terapia , Serotonina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Ansiedade/tratamento farmacológico , Neurônios Serotoninérgicos , Ácido gama-Aminobutírico/farmacologia
2.
Cereb Cortex ; 33(20): 10711-10721, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679857

RESUMO

Pain-related aversive memory is common in chronic pain patients. Electroacupuncture has been demonstrated to block pain-related aversive memory. The insular cortex is a key region closely related to aversive behaviors. In our study, a potential mechanism underlying the effect of electroacupuncture treatment on pain-related aversive memory behaviors relative to the insular cortex was investigated. Our study used the chemogenetic method, pharmacological method, electroacupuncture intervention, and behavioral detection. Our study showed that both inhibition of gamma-aminobutyric acidergic neurons and activation of the kappa opioid receptor in the insular cortex blocked the pain-related aversive memory behaviors induced by 2 crossover injections of carrageenan in mice; conversely, both the activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex play similar roles in inducing pain-related aversive memory behaviors following 2 crossover injections of carrageenan. In addition, activation of gamma-aminobutyric acidergic neurons in the insular cortex reversed the effect of kappa opioid receptor activation in the insular cortex. Moreover, electroacupuncture effectively blocked pain-related aversive memory behaviors in model mice, which was reversed by both activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex. The effect of electroacupuncture on blocking pain-related aversive memory behaviors may be related to the activation of the kappa opioid receptor and inhibition of gamma-aminobutyric acidergic neurons in the insular cortex.


Assuntos
Dor Crônica , Eletroacupuntura , Camundongos , Humanos , Animais , Receptores Opioides kappa/metabolismo , Córtex Insular , Carragenina/toxicidade , Neurônios GABAérgicos/fisiologia , Ácido gama-Aminobutírico/farmacologia , Doença Crônica , Recidiva
3.
Mol Neurobiol ; 59(9): 5299-5311, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35696012

RESUMO

Chronic pain, such as neuropathic pain, causes anxiety and other negative emotions, which aggravates the pain sensation and increases the risk of chronic pain over time. Dopamine receptor D1 (DRD1) and dopamine receptor D2 (DRD2) in the basolateral amygdala (BLA) have been implicated in mediating anxiety-related behaviors, but their potential roles in the BLA in neuropathic pain-induced anxiety have not been examined. Electroacupuncture (EA) is commonly used to treat chronic pain and emotional disorders, but it is still unclear whether EA plays a role in analgesia and anxiety relief through DRD1 and DRD2 in the BLA. Here, we used western blotting to examine the expression of DRD1 and DRD2 and pharmacological regulation combined with behavioral testing to detect anxiety-like behaviors. We observed that injection of the DRD1 antagonist SCH23390 or the DRD2 agonist quinpirole into the BLA contributed to anxiety-like behaviors in naive mice. EA also activated DRD1 or inhibited DRD2 in the BLA to alleviate anxiety-like behaviors. To further demonstrate the role of DRD1 and DRD2 in the BLA in spared nerve injury (SNI) model-induced anxiety-like behaviors, we injected the DRD1 agonist SKF38393 or the DRD2 antagonist sulpiride into the BLA. We found that both activation of DRD1 and inhibition of DRD2 could alleviate SNI-induced anxiety-like behaviors, and EA had a similar effect of alleviating anxiety. Additionally, neither DRD1 nor DRD2 in the BLA affected SNI-induced mechanical allodynia, but EA did. Overall, our work provides new insights into the mechanisms of neuropathic pain-induced anxiety and a possible explanation for the effect of EA treatment on anxiety caused by chronic pain.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Dor Crônica , Eletroacupuntura , Neuralgia , Animais , Ansiedade/complicações , Ansiedade/terapia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Dor Crônica/terapia , Camundongos , Neuralgia/metabolismo , Neuralgia/terapia , Receptores de Dopamina D1/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33986822

RESUMO

Electroacupuncture has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are not clear. The present study was conducted to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following electroacupuncture and to investigate the role of miR-137/NOX4 axis. In this study, chronic cerebral hypoperfusion (CCH) model was established by bilateral common carotid artery occlusion. Electroacupuncture treatment attenuated brain injury in CCH model group via regulating miR-137/NOX4 axis. Furthermore, the data of neuronal apoptosis and oxidative stress were observed. Our findings indicated that (1) neuronal apoptosis and oxidative stress in CCH rats were significantly increased compared with control group; (2) the animal cognitive performance was evaluated using the Morris water maze (MWM). The results showed that electroacupuncture therapy ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; and (3) electroacupuncture therapy reduces neuronal apoptosis and oxidative stress by activating miR-137/NOX4 axis. These results suggest that electroacupuncture therapy for CCH may be mediated by miR-137/NOX4 axis. Electroacupuncture therapy may act as a potential therapeutic approach for chronic cerebral hypoperfusion.

5.
Front Neurosci ; 15: 757628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095390

RESUMO

Neuropathic pain is a common cause of chronic pain and is often accompanied by negative emotions, making it complex and difficult to treat. However, the neural circuit mechanisms underlying these symptoms remain unclear. Herein, we present a novel pathway associated with comorbid chronic pain and anxiety. Using chemogenetic methods, we found that activation of glutamatergic projections from the rostral anterior cingulate cortex (rACC Glu ) to the ventrolateral periaqueductal gray (vlPAG) induced both hyperalgesia and anxiety-like behaviors in sham mice. Inhibition of the rACC Glu -vlPAG pathway reduced anxiety-like behaviors and hyperalgesia in the spared nerve injury (SNI) mice model; moreover, electroacupuncture (EA) effectively alleviated these symptoms. Investigation of the related mechanisms revealed that the chemogenetic activation of the rACC Glu -vlPAG circuit effectively blocked the analgesic effect of EA in the SNI mice model but did not affect the chronic pain-induced negative emotions. This study revealed a novel pathway, the rACC Glu -vlPAG pathway, that mediates neuropathic pain and pain-induced anxiety.

6.
Neural Plast ; 2020: 8865096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123189

RESUMO

Electroacupuncture (EA) can effectively modulate pain perception and pain-related negative affect; however, we do not know whether the effect of EA on sensation and affect is parallel, or dissociated, interactional. In this study, we observed the effects of the anterior cingulate cortex (ACC) lesion and the primary somatosensory cortex (S1) activation on pain perception, pain-related affection, and neural oscillation in S1. ACC lesions did not affect pain perception but relieved pain-paired aversion. S1 activation increased pain perception and anxious behavior. EA can mitigate pain perception regardless of whether there is an ACC lesion. Chronic pain may increase the delta and theta band oscillatory activity in the S1 brain region and decrease the oscillatory activity in the alpha, beta, and gamma bands. EA intervention may inhibit the oscillatory activity of the alpha and beta bands. These results suggest that EA may mitigate chronic pain by relieving pain perception and reducing pain-related affection through different mechanisms. This evidence builds upon findings from previous studies of chronic pain and EA treatment.


Assuntos
Afeto/fisiologia , Eletroacupuntura , Giro do Cíngulo/fisiologia , Percepção da Dor/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Masculino , Ratos Sprague-Dawley
7.
Neural Plast ; 2020: 9076042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184813

RESUMO

Electroacupuncture (EA) can effectively alleviate anxiety disorders and memory impairments caused by various neurodegenerative diseases; however, the molecular mechanisms underlying its neuroprotective effects are unclear. Previous studies have shown that the renin-angiotensin system (RAS) comprises of two axes with mutual antagonism: the classical angiotensin converting enzyme/angiotensin II/angiotensin II type 1 receptor (ACE/Ang II/AT1R) axis and the protective angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor (ACE2/Ang-(1-7)/MasR) axis. In this study, we observed that chronic cerebral hypoperfusion (CCH) mediated anxiety-like behavior and memory impairments in spontaneously hypertensive rats (SHR) via upregulation of the hippocampal classical axis (ACE/Ang II/AT1R) and the partial hippocampal protective axis (ACE2/Ang-(1-7)). However, Ang II levels were much higher than those of Ang-(1-7), indicating that the ACE/Ang II/AT1R axis plays a dominant role in the comorbidity of CCH and hypertension. Moreover, candesartan cilexetil (Canc) and perindopril (Peril) were used as positive control drugs. We found that EA, Canc, and Peril attenuated CCH-induced anxiety-like behavior and memory impairments in SHR, potentially via downregulation of the hippocampal classical axis (ACE/Ang II/AT1R) and upregulation of the whole hippocampal protective axis (ACE2/Ang-(1-7)/MasR). These results suggest that EA therapy for CCH with hypertension may be mediated by two hippocampal RAS axes.


Assuntos
Ansiedade/metabolismo , Transtornos Cerebrovasculares/metabolismo , Eletroacupuntura , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Ansiedade/etiologia , Transtornos Cerebrovasculares/complicações , Regulação para Baixo , Masculino , Fragmentos de Peptídeos/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima
8.
Front Neurosci ; 14: 615395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505241

RESUMO

Anxiety is a common comorbidity associated with chronic pain, which results in chronic pain complexification and difficulty in treatment. Electroacupuncture (EA) is commonly used to treat chronic pain and anxiety. However, the underlying mechanisms of the EA effect are largely unknown. Here, we showed that a circuitry underlying chronic pain induces anxiety disorders, and EA can treat them by regulating such circuitry. Using chemogenetic methods, we found that chemogenetic activation of the rostral anterior cingulate cortex (rACC) glutamatergic output to the thalamus induced anxiety disorders in control rats. Then, chemogenetic inhibition of the rACC-thalamus circuitry reduced anxiety-like behavior produced by intraplantar injection of the complete Freund's adjuvant (CFA). In this study, we examined the effects of EA on a rat model of CFA-mediated anxiety-like behaviors and the related mechanisms. We found that chemogenetic activation of the rACC-thalamus circuitry effectively blocked the effects of EA on chronic pain-induced anxiety-like behaviors in CFA rats. These results demonstrate an underlying rACC-thalamus glutamatergic circuitry that regulates CFA-mediated anxiety-like behaviors. This study also provides a potential mechanistic explanation for EA treatment of anxiety caused by chronic pain.

9.
Neural Plast ; 2019: 2057308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223307

RESUMO

Our previous studies have confirmed that electroacupuncture (EA) can effectively intervene in pain memory, but the neural mechanism involved remains unclear. In this study, we observed the effects of EA in regulating pain memory-related behaviors and synchronous neural oscillations in the rostral anterior cingulate cortex (rACC). During nociceptive behavioral testing, pain memory induced a nonpain stimulus that spurred a neural oscillatory reaction similar to that caused by pain stimuli in the rACC. After EA, nonpain stimuli did not induce decreased neural oscillatory activity in the rACC until the presentation of pain stimuli. During aversive behavioral testing, EA, through the downregulation of theta power, inhibited the retrieval of aversive memory and relieved pain memory-induced aversive behaviors. These changes of oscillatory activity may be the hallmarks of EA therapy for pain memory.


Assuntos
Comportamento Animal/fisiologia , Ondas Encefálicas/fisiologia , Eletroacupuntura , Giro do Cíngulo/fisiopatologia , Memória/fisiologia , Dor/fisiopatologia , Animais , Masculino , Nociceptividade/fisiologia , Limiar da Dor , Ratos , Ratos Sprague-Dawley
10.
Artigo em Inglês | MEDLINE | ID: mdl-28491108

RESUMO

Objective. To investigate the effect of EA on regional cerebral blood flow, cognitive deficits, inflammation, and its probable mechanisms in chronic cerebral ischemia (CCI) rats. Methods. Rats were assigned randomly into sham operation group (sham group) and operation group. For operation group, CCI model was performed using the permanent bilateral common carotid artery occlusion (BCCAO) method, and then rats were further randomly divided into model group and electroacupuncture (EA) group. 2/15 Hz low-frequency pulse electric intervention was applied at "Baihui" and "Dazhui" acupoints in EA group. Four weeks later, Morris water maze test was adopted to assess the cognitive function, using laser Doppler flowmetry to test changes of regional cerebral blood flow (rCBF); double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to measure proinflammatory cytokines (IL-6, TNF-α, and IL-1ß); western blot to test the protein expression quantities of proinflammatory cytokines, JAK2, and STAT3; and RT-PCR to test JAK2 mRNA and STAT3 mRNA in the hippocampus in each group. Results. Compared with the model group, learning and memory abilities and rCBF and IL-6 expression of the EA group enhanced markedly; IL-1ß and JAK2 significantly decreased; TNF-α and STAT3 also declined, but the difference was not apparent. Conclusion. Our research suggests that EA can improve cognitive deficits which may be induced by increasing rCBF and anti-inflammatory effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA