Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 25(5): 939-950, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30356120

RESUMO

Genetic factors do not fully account for the relatively high heritability of neurodevelopmental conditions, suggesting that non-genetic heritable factors contribute to their etiology. To evaluate the potential contribution of aberrant thyroid hormone status to the epigenetic inheritance of neurological phenotypes, we examined genetically normal F2 generation descendants of mice that were developmentally overexposed to thyroid hormone due to a Dio3 mutation. Hypothalamic gene expression profiling in postnatal day 15 F2 descendants on the paternal lineage of ancestral male and female T3-overexposed mice revealed, respectively, 1089 and 1549 differentially expressed genes. A large number of them, 675 genes, were common to both sets, suggesting comparable epigenetic effects of thyroid hormone on both the male and female ancestral germ lines. Oligodendrocyte- and neuron-specific genes were strongly overrepresented among genes showing, respectively, increased and decreased expression. Altered gene expression extended to other brain regions and was associated in adulthood with decreased anxiety-like behavior, increased marble burying and reduced physical activity. The sperm of T3-overexposed male ancestors revealed significant hypomethylation of CpG islands associated with the promoters of genes involved in the early development of the central nervous system. Some of them were candidates for neurodevelopmental disorders in humans including Nrg3, Nrxn1, Gabrb3, Gabra5, Apba2, Grik3, Reln, Nsd1, Pcdh8, En1, and Elavl2. Thus, developmental levels of thyroid hormone influence the epigenetic information of the germ line, disproportionately affecting genes with critical roles in early brain development, and leading in future generations to disease-relevant alterations in postnatal brain gene expression and adult behavior.


Assuntos
Comportamento Animal/fisiologia , Epigênese Genética/fisiologia , Expressão Gênica/fisiologia , Células Germinativas/fisiologia , Hipotálamo/metabolismo , Padrões de Herança/fisiologia , Hormônios Tireóideos/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Ilhas de CpG/genética , Metilação de DNA , Feminino , Iodeto Peroxidase/genética , Masculino , Camundongos , Mutação , Proteína Reelina
2.
J Neurosci ; 35(29): 10440-50, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203139

RESUMO

The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Hiperfagia/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteína Relacionada com Agouti/biossíntese , Animais , Hipotálamo/citologia , Hipotálamo/fisiologia , Hibridização In Situ , Camundongos , Camundongos Mutantes , Neuropeptídeo Y/metabolismo , Técnicas de Cultura de Órgãos , Núcleo Hipotalâmico Paraventricular/citologia , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA