Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Clin Cases ; 10(33): 12422-12429, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36483805

RESUMO

BACKGROUND: Allergic cutaneous vasculitis (ACV) is a difficult disease to treat. At present, there is no effective treatment for this condition. Traditionally, immunosuppressants and hormones have been primarily used in its management, but the treatment effect is suboptimal, and it has several side effects. CASE SUMMARY: We present the case of a 19-year-old woman who presented at our hospital with a four-year history of symmetric skin lesions mainly affecting her lower extremities. She had previously undergone treatment with prednisolone acetate, cetirizine hydrochloride, and loratadine tablets but had not experienced any relief in her condition. Thereafter, she was treated with oral traditional Chinese medicine. Her skin damage gradually improved within two months of treatment initiation. After six months, the skin ulcers had completely subsided. No evidence of skin ulcer recurrence was observed during the subsequent follow-up. This report presents the first case of a female patient who received oral Danggui Sini decoction for the treatment of ACV. CONCLUSION: Danggui Sini decoction may be a promising oral treatment for ACV patients.

2.
Environ Res ; 215(Pt 3): 114420, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167116

RESUMO

Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.


Assuntos
Poluentes Ambientais , Microbiota , Anaerobiose , Benzeno/química , Derivados de Benzeno , Biodegradação Ambiental , Elétrons , Ferro , Metano , Nitratos/química , Oxidantes , Solo , Sulfatos/química , Tolueno/química , Xilenos
3.
Curr Biol ; 32(11): 2454-2466.e7, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512695

RESUMO

Rates of plant cell elongation change with day-night alternation, reflecting differences in metabolism related to cell wall remodeling. Information from cell wall surveillance pathways must be integrated with growth regulation pathways to provide feedback regulation of cell wall modification; such feedback regulation is important to ensure sufficient strength and prevent rupture of the cell wall during growth. Several lines of evidence suggest that cell wall perturbations often influence phytohormone signaling, but the identity of the nexus between these two processes remained elusive. Here, we show that wall-associated kinase11 (OsWAK11) acts as a linker connecting cell wall pectin methyl-esterification changes and brassinosteroid (BR) signaling in rice. Our data show that OsWAK11 controls several important agronomical traits by regulating cell elongation in rice. OsWAK11 directly binds and phosphorylates the BR receptor OsBRI1 at residue Thr752, within a motif conserved across most monocot graminaceous crops, thus hindering OsBRI1 interaction with its co-receptor OsSERK1/OsBAK1 and inhibiting BR signaling. The extracellular domain of OsWAK11 shows a much stronger interaction toward methyl-esterified pectin as compared with de-methyl-esterified pectin. OsWAK11 is stabilized in light but is degraded in darkness, in a process triggered by changes in the ratio of methyl-esterified to de-methyl-esterified pectin, creating fluctuations in plant BR signaling in response to day and night alternation. We conclude that OsWAK11 is a cell wall monitor that regulates cell elongation rates to adapt to the environment from the outside in, which complements the well-established inside-out signaling pathway affecting cell elongation in plants.


Assuntos
Brassinosteroides , Oryza , Brassinosteroides/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais
4.
PeerJ ; 9: e12380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966572

RESUMO

BACKGROUND: Core fucosylation catalyzed by FUT8 is essential for TGF-ß binding to TGF-ß receptors. METHODS: Indirect TGF-ß1 binding assay was used to evaluate the ability of TGF-ß1 to bind to TGFBRs, Alizarin red and alkaline phosphatase staining were used to detect osteogenic differentiation and mineralization ability , western blot and quantitative RT-PCR were used to measure the differential expression of osteogenesis-related proteins and genes. Plasmid-mediated gain-of-function study. The scale of core fucosylation modification was detected by Lectin-blot and LCA laser confocal. RESULTS: Our results showed that compared with vehicle treatment, high-dose (10-6 and 10-5 M) dexamethasone significantly inhibited cell proliferation, osteogenic differentiation, and FUT8 mRNA expression while promoting mRNA expression of adipogenesis-related genes in MC3T3-E1 cells, suggesting that downregulation of FUT8 is involved in the inhibitory effect of high-dose dexamethasone on osteogenesis. Overexpression of FUT8 significantly promoted osteogenic differentiation and activated TGF-ß/Smad signaling in MC3T3-E1 cells in the presence of high-dose dexamethasone, suggesting that FUT8 reverses the inhibitory effect of high-dose dexamethasone on osteogenesis. In addition, lectin fluorescent staining and blotting showed that overexpression of FUT8 significantly reversed the inhibitory effects of high-dose dexamethasone on core fucosylation of TGFBR1 and TGFBR2. Furthermore, indirect TGF-ß1 binding assay showed that overexpression of FUT8 remarkably promoted TGF-ß1 binding to TGFBRs in MC3T3-E1 cells in the presence of high-dose dexamethasone. CONCLUSIONS: Taken together, these results suggest that overexpression of FUT8 facilitates counteracting the inhibitory effect of dexamethasone on TGF-ß signaling and osteogenesis.

5.
Biomed Res Int ; 2021: 5538643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557547

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a refractory immune disease, which is often complicated with osteonecrosis of the femoral head (ONFH). Curcumin, the most active ingredient of Curcuma longa with a variety of biological activities, has wide effects on the body system. The study is aimed at exploring the potential therapeutic targets underlying the effect of curcumin on SLE-ONFH by utilizing a network pharmacology approach and molecular docking strategy. METHODS: Curcumin and its drug targets were identified using network analysis. First, the Swiss target prediction, GeneCards, and OMIM databases were mined for information relevant to the prediction of curcumin targets and SLE-ONFH-related targets. Second, the curcumin target gene, SLE-ONFH shared gene, and curcumin-SLE-ONFH target gene networks were created in Cytoscape software followed by collecting the candidate targets of each component by R software. Third, the targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Eventually, a gene-pathway network was constructed and visualized by Cytoscape software; key potential central targets were verified and checked by molecular docking and literature review. RESULTS: 201 potential targets of curcumin and 170 related targets involved in SLE-ONFH were subjected to network analysis, and the 36 intersection targets indicated the potential targets of curcumin for the treatment of SLE-ONFH. Additionally, for getting more comprehensive and accurate candidate genes, the 36 potential targets were determined to be analyzed by network topology and 285 candidate genes were obtained finally. The top 20 biological processes, cellular components, and molecular functions were identified, when corrected by a P value ≤ 0.05. 20 related signaling pathways were identified by KEGG analysis, when corrected according to a Bonferroni P value ≤ 0.05. Molecular docking showed that the top three genes (TP53, IL6, VEGFA) have good binding force with curcumin; combined with literature review, some other genes such as TNF, CCND1, CASP3, and MMP9 were also identified. CONCLUSION: The present study explored the potential targets and signaling pathways of curcumin against SLE-ONFH, which could provide a better understanding of its effects in terms of regulating cell cycle, angiogenesis, immunosuppression, inflammation, and bone destruction.


Assuntos
Curcumina/uso terapêutico , Necrose da Cabeça do Fêmur/complicações , Necrose da Cabeça do Fêmur/tratamento farmacológico , Lúpus Eritematoso Sistêmico/complicações , Simulação de Acoplamento Molecular , Farmacologia em Rede , Curcumina/química , Curcumina/farmacologia , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
6.
Microb Pathog ; 143: 104109, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32171710

RESUMO

Acute lung injury (ALI) is considered as an uncontrolled inflammatory response that can leads to acute respiratory distress syndrome (ARDS), which limits the therapeutic strategies. Ginsenosides Rb1 (Rb1), an active ingredient obtained from Panax ginseng, possesses a broad range of pharmacological and medicinal properties, comprising the anti-inflammatory, anti-oxidant, and anti-tumor activities. Therefore, the purpose of the present study was to investigate the protective effects of Rb1 against S. aureus-induced (ALI) through regulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and mitochondrial-mediated apoptotic pathways in mice (in-vivo), and RAW264.7 cells (in-vitro). For that purpose, forty Kunming mice were randomly assigned into four treatment groups; (1) Control group (phosphate buffer saline (PBS); (2) S. aureus group; (3) S. aureus + Rb1 (20 mg/kg) group; and (4) Rb1 (20 mg/kg) group. The 20 µg/mL dose of Rb1 was used in RAW264.7 cells. In the present study, we found that Rb1 treatment reduced ALI-induced oxidative stress via suppressing the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) and increase the antioxidant enzyme activities of superoxidase dismutase 1 (SOD1), Catalase (CAT), and glutathione peroxidase 1 (Gpx1). Similarly, Rb1 markedly increased messenger RNA (mRNA) expression of antioxidant genes (SOD1, CAT and Gpx1) in comparison with ALI group. The histopathological results showed that Rb1 treatment ameliorated ALI-induced hemorrhages, hyperemia, perivascular edema and neutrophilic infiltration in the lungs of mice. Furthermore, Rb1 enhanced the antioxidant defense system through activating the Nrf2 signaling pathway. Our findings showed that Rb1 treated group significantly up-regulated mRNA and protein expression of Nrf2 and its downstream associated genes down-regulated by ALI in vivo and in vitro. Moreover, ALI significantly increased the both mRNA and protein expression of mitochondrial-apoptosis-related genes (Bax, caspase-3, caspase-9, cytochrome c and p53), while decreased the Bcl-2. In addition, Rb1 therapy significantly reversed the mRNA and protein expression of these mitochondrial-apoptosis-related genes, as compared to the ALI group in vivo and in vitro. Taken together, Rb1 alleviates ALI-induced oxidative injury and apoptosis by modulating the Nrf2 and mitochondrial signaling pathways in the lungs of mice.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ginsenosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Infecções Estafilocócicas/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Ginsenosídeos/química , Camundongos , Panax/química , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real
7.
Biomed Res Int ; 2019: 5016483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179326

RESUMO

Renal cell carcinoma (RCC) is the second most common human urinary tumor. Eupatilin is the main active ingredient of the traditional Chinese medicine Artemisia asiatica. The effect of Eupatilin on RCC and the underlying mechanism remain unknown. Here, we investigated the anticancer effects and mechanisms of Eupatilin in RCC in vivo and in vitro, laying an experimental foundation for the clinical application of Eupatilin in the treatment of RCC. The results showed that Eupatilin significantly inhibited 786-O cell viability and migration and promoted apoptosis. Eupatilin inhibited the expression of miR-21 in 786-O cells, and overexpression of miR-21 suppressed the effect of Eupatilin on viability, apoptosis, and migration in 786-O cells. Eupatilin inhibited the growth of renal tumors in nude mice by downregulating miR-21. YAP1, which was identified as a target of miR-21, showed significantly lower expression in RCC tissues than in healthy tissues. miR-21 significantly inhibited YAP1 protein expression in 786-O cells and tumor tissues isolated from nude mice, and YAP1 attenuated the effect of miR-21 on the viability, apoptosis, and migration of 786-O cells. In conclusion, Eupatilin inhibited the expression of miR-21, which mediated the proapoptotic and antimigratory effects of Eupatilin by suppressing YAP1 in renal cancer cells. These results suggested that Eupatilin could be a potent agent for the treatment of RCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Flavonoides/farmacologia , Neoplasias Renais/tratamento farmacológico , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , Animais , Apoptose , Artemisia/química , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Neoplasias Renais/patologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Sinalização YAP
8.
Int J Mol Sci ; 14(11): 22982-96, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24264042

RESUMO

Cytoplasmic male sterility (CMS), widely used in the production of hybrid seeds, is a maternally inherited trait resulting in a failure to produce functional pollen. In order to identify some specific proteins associated with CMS in pepper, two-dimensional gel electrophoresis (2-DE) was applied to proteomic analysis of anthers/buds between a CMS line (designated NA3) and its maintainer (designated NB3) in Capsicum annuum L. Thirty-three spots showed more than 1.5-fold in either CMS or its maintainer. Based on mass spectrometry, 27 spots representing 23 distinct proteins in these 33 spots were identified. Proteins down-regulated in CMS anthers/buds includes ATP synthase D chain, formate dehydrogenase, alpha-mannosidas, RuBisCO large subunit-binding protein subunit beta, chloroplast manganese stabilizing protein-II, glutathione S-transferase, adenosine kinase isoform 1T-like protein, putative DNA repair protein RAD23-4, putative caffeoyl-CoA 3-O-methyltransferase, glutamine synthetase (GS), annexin Cap32, glutelin, allene oxide cyclase, etc. In CMS anthers/buds, polyphenol oxidase, ATP synthase subunit beta, and actin are up-regulated. It was predicted that male sterility in NA3 might be related to energy metabolism turbulence, excessive ethylene synthesis, and suffocation of starch synthesis. The present study lays a foundation for future investigations of gene functions associated with pollen development and cytoplasmic male sterility, and explores the molecular mechanism of CMS in pepper.


Assuntos
Capsicum/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Pólen/genética , Proteoma/análise , Capsicum/genética , Citoplasma/genética , Citoplasma/patologia , Citoplasma/fisiologia , Eletroforese em Gel Bidimensional , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Proteínas de Plantas/biossíntese , Pólen/crescimento & desenvolvimento
9.
Opt Express ; 19(2): 1301-9, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21263671

RESUMO

Asymmetric light reflectance effect was observed in an anodic aluminum oxide on glass structure. The transmitted light from two sides of the films show the same colors, whereas the reflected light from two sides show complementary colors. The spectra analysis demonstrates that this asymmetric light reflectance effect can be ascribed to the asymmetric geometric structure of nanoscale aluminum networks. This effect may result in applications in many fields, especially in optical communication.


Assuntos
Óxido de Alumínio/química , Fotometria/métodos , Eletrodos , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA