Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 37(9): 4076-4091, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37156642

RESUMO

Molecular-targeted therapy has shown its effectiveness in pancreatic cancer, while single-targeted drug often cannot provide long-term benefit because of drug resistance. Fortunately, multitarget combination therapy can reverse drug resistance and achieve better efficacy. The typical treatment characteristics of traditional Chinese medicine monomer on tumor are multiple targets, with small side effects, low toxicity, and so forth. Agrimoniin has been reported to be effective on some cancers, while the mechanism still needs to be clarified. In this study, we used 5-ethynyl-2'-deoxyuridine, cell counting kit-8, flow cytometry, and western blot experiments to confirm that agrimoniin can significantly inhibit the proliferation of pancreatic cancer cell PANC-1 by inducing apoptosis and cell cycle arrest. In addition, by using SC79, LY294002 (the agonist or inhibitor of AKT pathway), and U0126 (the inhibitor of ERK pathway), we found that agrimoniin inhibited cell proliferation by simultaneously inhibiting AKT and ERK pathways. Moreover, agrimoniin could significantly increase the inhibitory effect of LY294002 and U0126 on pancreatic cancer cells. Meanwhile, in vivo experiments also supported the above results. In general, agrimoniin is a double-target inhibitor of AKT and ERK pathways in pancreatic cancer cells; it is expected to be used as a resistance reversal agent of targeted drugs or a synergistic drug of the inhibitor of AKT pathway or ERK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
2.
J Cancer ; 6(7): 623-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078792

RESUMO

Platycodin-D (PD) is an effective triterpene saponin extracted from the root of Platycodon grandiflorum which has been used clinically to treat pulmonary diseases in traditional Chinese medicine. Recently, it has been reported that PD has anti-tumor effects in various cancer models through the induction of apoptosis. However, whether PD induces autophagy in both cell lines and its molecular mechanisms have not been elucidated. Here, our present study confirmed that PD induced autophagy in both NCI-H460 and A549 cells via up-regulating the expression levels of Atg-3, Atg-7 and Beclin-1. Meanwhile, PD contributed to the up-regulation of LC3-II at both protein and mRNA levels. Further detection of the PI3K/Akt/mTOR signaling pathway compared to LY294002 (PI3K kinase inhibitor), RAP (mTOR kinase inhibitor) and insulin (an activator of PI3K/Akt/mTOR signaling pathway) showed that PD induced autophagy through inhibiting the pathway at p-Akt (Ser473), p-p70S6K (Thr389) and p-4EBP1 (Thr37/46) in both cell lines. Moreover, the examination of MAPK signaling pathway showed that PD treatment increased the phosphorylation of JNK and p38 MAPK, while decreased the phosphorylation of Erk1/2 in both cell lines. Additionally, the effects assessed with a panel of pharmacologic inhibitors, including U0126 (Erk1/2 kinase inhibitor), SP600125 (JNK kinase inhibitor) and SB203580 (p38 MAPK kinase inhibitor) suggested that the activation of JNK and p38 MAPK participated in PD-induced autophagy. Taken together, these findings suggested that PD induced autophagy in NCI-H460 and A549 cells through inhibiting PI3K/Akt/mTOR signaling pathway and activating JNK and p38 MAPK signaling pathways. Therefore, PD may be an alternative compound for NSCLC therapy.

3.
Yao Xue Xue Bao ; 46(5): 605-12, 2011 May.
Artigo em Chinês | MEDLINE | ID: mdl-21800552

RESUMO

Triterpenes, which have large application potential in the treatment of cancer, are the main active components of genuine medicinal material Alisma orientale (Sam.) Juzep. Farnesyl pyrophosphate synthase (FPPS) is one of the important rate-limiting enzymes in the synthetic pathway of triterpenes. In this study the FPPS full length cDNA of the A. orientale, was cloned via homology-based cloning approach and rapid amplification of cDNA ends (RACE). The full length of the FPPS cDNA was 1 531 bp (accession no. HQ724508), which contained a full 1 032 bp ORF that encoded 343 amino acids. The deduced protein sequence exhibited five conserved motifs, two of which is riched of Asp (DDXXD). The result of real-time quantitative PCR (QRT-PCR) showed that FPPS gene was expressed in different organs of A. orientale. The expression increased from October to the first ten-day period of December, and then decreased. The FPPS gene expression was higher in leaves but lower in leafstalk, tuber and root. HPLC analysis of active components 23-acetyl-alismol B of A. orientale. during different periods indicated that its change trend should be consistent with FPPS gene expression. It can be primarily deduced that FPPS gene should be an important control point in the synthetic pathway of Alisma terpenes. This study may facilitate the quality of medicinal plants through gene engineering in the future.


Assuntos
Alisma/enzimologia , Geraniltranstransferase/genética , Plantas Medicinais/enzimologia , Alisma/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Sequência Conservada , DNA Complementar/genética , DNA de Plantas/genética , Amplificação de Genes , Geraniltranstransferase/isolamento & purificação , Geraniltranstransferase/metabolismo , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Medicinais/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Am J Physiol Endocrinol Metab ; 300(5): E886-93, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21364120

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, and inflammatory disorders. In this study, we tested the effect of rhein, a lipophilic anthraquinone derived from a traditional Chinese herbal medicine Rheum palmatum L., on NAFLD-associated hepatic steatosis, insulin resistance, and the T helper (Th)1/Th2 cytokine imbalance in high-fat diet-induced obese (DIO) mice. We found that oral administration of rhein for 40 days significantly increased energy expenditure, reduced body weight, particularly body fat content, improved insulin resistance, and lowered circulating cholesterol levels in DIO mice without affecting food intake. Rhein treatment also reduced liver triglyceride levels, reversed hepatic steatosis, and normalized alanine aminotransferase (ALT) levels in these mice. Gene analysis and Western blot showed that rhein markedly suppressed the expression of the lipogenic enzyme sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes in the liver. Luciferase reporter assay revealed that rhein suppressed the transcriptional activity of SREBP-1c through its upstream regulator, liver X receptor (LXR). This suggests that rhein exerts its effects by targeting LXR, which is also supported by its inability to reduce body weight in LXR knockout mice. Moreover, multiplex ELISA displayed a downregulated Th1 response after rhein treatment. Rhein shifted the Th1/Th2 responses by inhibiting T-box expressed in T-cells (T-bet) expression and enhancing GATA-binding protein-3 (GATA-3) expression through increased signal transducer and activator of transcription 6 (STAT6) phosphorylation. These data indicate that rhein ameliorated NAFLD and associated disorders through LXR-mediated negative energy balance, metabolic regulatory pathways, and immunomodulatory activities involved in hepatic steatosis. The combined effects of rhein to target hepatic metabolic and immune pathways may be beneficial for complex metabolic diseases such as NAFLD.


Assuntos
Antraquinonas/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Dieta , Feminino , Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Lipídeos/sangue , Fígado/efeitos dos fármacos , Receptores X do Fígado , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA