Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 19(1): 127, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326818

RESUMO

BACKGROUND: Icariin, a traditional Chinese medicine, has demonstrated anti-osteoporotic properties in ovariectomized mice. However, its effectiveness in preventing bone loss induced by ketogenic diet (KD), which mimics osteoporosis in human, remains unexplored. This study aims to investigate icariin's impact on KD-induced bone loss in mice. METHODS: Thirty mice were divided into: sham, KD, and KD + icariin groups. Post a 12-week intervention, evaluation including bone microstructures, serum concentrations of tartrate-resistant acid phosphatase (TRAP) and bone-specific alkaline phosphatase (ALP), and femoral tissue expression levels of osteocalcin (OCN) and TRAP. The expression levels of mammalian target of rapamycin (mTOR), ALP, peroxisome proliferator-activated receptor gamma (PPAR-γ), phosphorylated mTOR (p-mTOR), and the autophagy adaptor protein (p62) were also analyzed. Alizarin granule deposition and cellular ALP levels were measured following the induction of bone marrow mesenchymal stem cells (BMSCs) into osteogenesis. RESULTS: The study found that KD significantly impaired BMSCs' osteogenic differentiation, leading to bone loss. Icariin notably increased bone mass, stimulated osteogenesis, and reduced cancellous bone loss. In the KD + icariin group, measures such as bone tissue density (TMD), bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) were significantly higher than in the KD group. Additionally, bone trabecular separation (Tb.Sp) was markedly lower in the KD + icariin group. Moreover, icariin increased OCN and ALP levels while suppressing PPAR-γ, TRAP, p62, and p-mTOR. In cellular studies, icariin encouraged osteogenic development in BMSCs under KD conditions. CONCLUSIONS: Icariin effectively counteracts bone thinning and improves bone microstructure. Its mechanism likely involves stimulating BMSCs osteogenic differentiation and inhibiting bone resorption, potentially through mTOR downregulation. These findings suggest icariin's potential as an alternative treatment for KD-induced bone loss.


Assuntos
Doenças Ósseas Metabólicas , Dieta Cetogênica , Flavonoides , Células-Tronco Mesenquimais , Osteoporose , Humanos , Camundongos , Animais , Osteogênese , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , Diferenciação Celular , Doenças Ósseas Metabólicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Mamíferos
2.
Biomed Res Int ; 2021: 6666836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33553429

RESUMO

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/ß-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, ß-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/ß-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Flavonoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Células da Medula Óssea/citologia , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Ratos Sprague-Dawley , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA