Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115075, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37385213

RESUMO

BACKGROUND: One of the effects of Steamed Panax notoginsen (SPN) is to replenish blood, which is mostly used to treat anemia in clinic. SPN has the effect of treating anemia and Alzheimer's disease (AD) in clinical and basic research. In traditional Chinese medicine, anemia and AD have the same characteristics, and their symptoms are qi and blood deficiency. METHODS: First, data analysis was carried out through network pharmacology to predict the action targets of SPN homotherapy in the treatment of AD and anemia. Specifically, TCMSP and relevant literature were used to screen the main active ingredients of Panax notoginseng, and SuperPred was used to predict the action targets of the active ingredients. Disease targets related to AD and anemia were collected through Genecards database, and STRING and protein interaction (PPI) was used for enrichment analysis, Analyze the characteristics of the active ingredient target network on the Cytascape 3.9.0 platform, and use Metascape to enrich the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment (KEGG pathway). Then Drosophila was used as the AD animal model, and the effects of SPN on the climbing ability, olfactory memory and brain Aß, with rats as anemia animal models, the improvement effect of SPN on blood routine and organ index of rats with blood deficiency induced by CTX and APH was analyzed to further explain the therapeutic effect of SPN on these two diseases. Finally, the regulatory effect of SPN on the key active target of allotherapy for AD and anemia was verified by PCR. RESULTS: After the screening, 17 active components and 92 action targets of SPN were obtained. The degree values of components and the first 15 targets are NFKB1, IL10, PIK3CA, PTGS2, SRC, ECFR, CASP3, MTOR, IL1B, ESR1, AKT1, HSP90AA1, IL6, TNF, and Toll-like receptor, it is mainly related to inflammatory response, immune regulation and antioxidation. SPN improved the climbing ability, olfactory memory ability, and Aß42 content in the brain of Aß flies, and significantly reduced the expression of TNF and Toll-like receptor in the brain after treatment. SPN can significantly improve the blood routine index and organ index of anemia rats, and also significantly reduce the expression of TNF and Toll-like receptor in the brain after treatment. CONCLUSION: SPN can regulate the expression of TNF and Toll-like receptor to achieve the same treatment of AD and anemia.


Assuntos
Doença de Alzheimer , Anemia , Medicamentos de Ervas Chinesas , Panax notoginseng , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Receptores Toll-Like , Encéfalo , Anemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Artigo em Chinês | WPRIM | ID: wpr-940839

RESUMO

ObjectiveBy comparing the difference of volatile components of the decoction pieces before and after being processed by braising method of Jianchangbang and steaming method included in the 2020 edition of Chinese Pharmacopoeia, the influence of processing methods on the flavor formation of Polygoni Multiflori Radix (PMR) was compared. MethodHeadspace-gas chromatography-mass spectrometry (HS-GC-MS) was used to detect the volatile components of 30 batches of PMR samples from 3 origins with 3 processing methods. The GC was performed under programmed temperature (starting temperature of 40 ℃, rising to 150 ℃ at 5 ℃·min-1, and then rising to 195 ℃ at 10 ℃·min-1) with high purity helium as carrier gas and the split ratio of 10∶1. Mass spectrometry conditions were electron impact ion source (EI) and the detection range of m/z 50-650, the peak area normalization method was used to calculate the relative mass fraction of each component. The chromaticity values of different processed products were measured by a precision colorimeter, the relationship between chromaticity values and relative contents of volatile components was investigated by OriginPro 2021, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed on the sample data by SIMCA14.1. The differential components of different processed products of PMR were screened according to the principle of variable importance in the projection (VIP) value>1.5, and the material basis of different odor formation of PMR and its processed products was explored. ResultA total of 59 volatile components were identified, among which 34 were raw products, 33 were braised products, and 27 were steamed products. PCA and OPLS-DA results showed that there were significant differences between the three, but there was no significant difference between samples from different origins of the same processing method. Color parameters of a*, b*, E*ab had no significant correlation with contents of volatile components, while L* was negatively correlated with contents of 2-methyl-2-butenal, 2-methyltetrahydrofuran-3-one and 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (P<0.05). The contents of pungent odor components such as caproic acid, nonanoic acid and synthetic camphor decreased after processing, while the contents of sweet flavor components such as 2-methyl-2-butenal, furfural and 5-hydroxymethylfurfural increased after processing, and the contents of furfural, 5-methyl-2-furanmethanol, 5-hydroxymethylfurfural and other aroma components in the braised products were significantly higher than that in the steamed products. ConclusionHS-GC-MS can quickly identify the volatile substance basis that causes the different odors of PMR and its processed products. The effect of processing methods on the odor is greater than that of origin. There is a significant correlation between the color parameter of L* and contents of volatile components, the "raw" taste of PMR may be related to volatile components such as caproic acid, pelargonic acid and synthetic camphor, the "flavor" after processing may be related to the increase of the contents of 2-methyl-2-butenal, furfural, 5-hydroxymethylfurfural, methyl maltol and furfuryl alcohol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA