Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 19(4): e202301036, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38230541

RESUMO

Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Microambiente Tumoral , Peróxido de Hidrogênio , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Glutationa , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
2.
Toxicol Lett ; 387: 50-62, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741353

RESUMO

Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.


Assuntos
Acetaminofen , Efeitos Tardios da Exposição Pré-Natal , Humanos , Camundongos , Gravidez , Feminino , Animais , Acetaminofen/toxicidade , Desenvolvimento Fetal , Osteogênese , Osso e Ossos
3.
Int Immunopharmacol ; 124(Pt A): 110832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634449

RESUMO

Glutamine has anti-inflammatory properties as well as the ability to maintain the integrity of the intestinal barrier. In our previous study, we found that 1.0% glutamine promoted SIgA (secretory immunoglobulin A) synthesis in the gut via both T cell-dependent and non-dependent processes, as well as via the intestinal microbiota. The purpose of this study was to investigate whether the intestinal microbiota or microbial metabolites regulate SIgA synthesis. In the mouse model, supplementation with 1.0% glutamine had no significant effect on the intestinal microbiota, but KEGG function prediction showed the difference on microbiota metabolites. Therefore, in this study, untargeted metabolomics techniques were used to detect and analyze the metabolic changes of glutamine in intestinal luminal contents. Metabolomics showed that in the positive ion (POS) mode, a total of 1446 metabolic differentials (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were annotated in samples treated with glutamine-supplemented group compared to control group, of which 922 were up-regulated and 524 down-regulated. In the negative ion (NEG) mode, 370 differential metabolites (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were screened, of which 220 were up-regulated and 150 down-regulated. These differential metabolites mainly include bile secretion synthesis, ABC transporters, diterpenoids and other secondary metabolites. KEGG analysis showed that propionic acid metabolism, TCA cycle, endoplasmic reticulum protein processing, nitrogen metabolism and other metabolic pathways were active. The above metabolic pathways and differential metabolites have positive effects on intestinal development and intestinal immunity, and combined with our previous studies, we conclude that glutamine supplementation can may maintain intestinal homeostasis and improving intestinal immunity through intestinal microbial metabolites.

4.
Small ; 19(26): e2207995, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942859

RESUMO

Effectively interfering energy metabolism in tumor cells and simultaneously activating the in vivo immune system to perform immune attacks are meaningful for tumor treatment. However, precisely targeted therapy is still a huge challenge. Herein, a mitochondrial-targeting phototheranostic system, FE-T nanoparticles (FE-T NPs) are developed to damage mitochondria in tumor cells and change the tumor immunosuppressive microenvironment. FE-T NPs are engineered by encapsulating the near-infrared (NIR) absorbed photosensitizer IR-FE-TPP within amphiphilic copolymer DSPE-SS-PEG-COOH for high-performing with simultaneous mitochondrial-targeting, near-infrared II (NIR-II) fluorescence imaging, and synchronous photothermal therapy (PTT) /photodynamic therapy (PDT) /immune therapy (IMT). In tumor treatment, the disulfide in the copolymer can be cleaved by excess intracellular glutathione (GSH) to release IR-FE-TPP and accumulate in mitochondria. After 808 nm irradiation, the mitochondrial localization of FE-T NPs generated reactive oxygen species (ROS), and hyperthermia, leading to mitochondrial dysfunction, photoinductive apoptosis, and immunogenic cell death (ICD). Notably, in situ enhanced PDT/PTT in vivo via mitochondrial-targeting with FE-T NPs boosts highly efficient ICD toward excellent antitumor immune response. FE-T NPs provide an effective mitochondrial-targeting phototheranostic nanoplatform for imaging-guided tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Terapia Combinada , Fármacos Fotossensibilizantes , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Polímeros , Mitocôndrias , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Fototerapia/métodos , Microambiente Tumoral
5.
J Nanobiotechnology ; 20(1): 475, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369039

RESUMO

Phototherapy is a conducive and non-invasive strategy for cancer therapy under light irradiation. Inspiringly, fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds a great promise for imaging-guided phototherapy with deep penetration and high spatiotemporal resolution. However, most phototherapeutics still face great challenges, including complicated synthesis of agents, potential biotoxicity and unsatisfied therapeutic outcomes. Herein, a near-infrared laser triggered molecular photosensitizer FEPT, modified with triphenylphosphine PEGylation (PEG2000-TPP), is developed for NIR-II imaging-guided mitochondria-targeting synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/immune therapy (IMT). The mitochondria-targeting photosensitizer FEPT can produce reactive oxygen species (ROS) and hyperpyrexia upon 808 nm laser irradiation, resulting in mitochondrial dysfunction and photo-induced apoptosis via caspase-3 pathway. Phototherapy-induced hyperthermia or ROS triggers the release of immunogenic intracellular substrates from dying tumor cells, thereby promoting the activation of antitumor immunity. Herein, this work provides a practicable strategy to develop a molecular phototheranostic platform for imaging-guided cancer therapy via mitochondria-targeting.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Terapia Fototérmica , Espécies Reativas de Oxigênio/metabolismo , Fototerapia , Mitocôndrias/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Linhagem Celular Tumoral , Nanopartículas/química
6.
World J Gastroenterol ; 28(38): 5589-5601, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36304092

RESUMO

BACKGROUND: The prognosis of gastric cancer in an advanced stage remains poor. The exact efficacy of the use of intraoperative sustained-release chemotherapy with 5-fluorouracil (5-FU) in advanced-stage gastric cancer is still unelucidated. AIM: To explore the long-term survival benefit of using sustained-release 5-FU implants in stage II and stage III gastric cancer patients. METHODS: Patients with gastric cancer in a locally advanced stage and who underwent an R0 radical resection between Jan 2014, to Dec 2016, in this single institution were included. Patients with pathological diagnoses other than adenocarcinoma were excluded. All included patients were grouped according to whether intraoperative sustained-release (SR) chemotherapy with 5-FU was used or not (NSR). The primary end-point was 5-year overall survival. Kaplan-Meier method with log-rank test was used to analyze the overall survival of patients and Cox analysis was used to analyze prognosis factors of these patients. RESULTS: In total, there were 563 patients with gastric cancer with locally advanced stage, who underwent an R0 radical resection. 309 patients were included in the final analysis. 219 (70.9%) were men, with an average age of 58.25 years. Furthermore, 56 (18.1%) received neoadjuvant chemotherapy, and 191 (61.8%) were in TNM stage III. In addition, 158 patients received intraoperative sustained-release chemotherapy with 5-FU and were included in the SR group, while the other 161 patients were included in the NSR group. The overall complication rate was 12.94% in the whole group and 10.81%, 16.46% in SR and NSR groups, respectively. There were no significant differences between the two groups in overall survival and complication rate (P > 0.05). The multivariate cox analysis indicated that only N Stage and neoadjuvant therapy were independent influencing factors of survival. CONCLUSION: Intraoperative sustained-release chemotherapy usage with 5-FU, did not improve the survival of patients who underwent an R0 radical resection in locally advanced stage of gastric cancer.


Assuntos
Neoplasias Gástricas , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Preparações de Ação Retardada/uso terapêutico , Estadiamento de Neoplasias , Fluoruracila/uso terapêutico , Gastrectomia/métodos , Prognóstico , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Estudos Retrospectivos , Quimioterapia Adjuvante
7.
Front Microbiol ; 13: 961989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081792

RESUMO

The purpose of this study was to evaluate the effects of different levels of potassium magnesium sulfateon (PMS) on growth performance, diarrhea rate, intestinal morphology, antioxidant capacity, intestinal immunity, and gut microbiota in weaned piglets. A total of 216 weaned piglets were randomly divided into six dietary groups: the basal diet with 0% (CON), 0.15, 0.3, 0.45, 0.6, and 0.75% PMS. The results showed that the ADFI of 29-42 days and 1-42 days was linearly and quadratically increased by the PMS supplementation (P < 0.05), and significantly reduced the diarrhea rate in weaned piglets (P < 0.05). Moreover, dietary supplementation with PMS significantly reduced the serum adrenaline and noradrenaline levels in weaned piglets (P < 0.05). Furthermore, 0.3% PMS significantly increased the activity of glutathione peroxidase (GSH-Px) in the jejunum (P < 0.05) and tended to increase the activity of superoxide dismutase (SOD) in the jejunal mucosa of piglets (P < 0.1). Additionally, dietary supplementation with PMS significantly reduced the interleukin-1ß (IL-1ß) level in the jejunal mucosa (P < 0.05), and 0.3% PMS increased the serum IgM content in piglets (P < 0.05). Furthermore, the analysis of colonic microbiota by 16S RNA sequencing showed that the addition of PMS increased the Shannon index (P < 0.05) and Observed Species index (P < 0.05). Based on linear discriminant analysis effect size (LEfSe) and T-test analysis, the addition of PMS increased the relative abundance of Ruminococcaceae and Peptostreptococcaceae in the colonic digesta (P < 0.05). Spearman analysis showed that there was a positive correlation between intestinal GSH-Px activity and the relative abundance of Peptostreptococcaceae. These results showed that dietary supplementation with PMS could improve growth performance, alleviate diarrhea incidence, and modulate the antioxidant capacity and intestinal immunity in weaned piglets, which was partially related to the significant changes in colonic microbiota composition.

9.
New Phytol ; 236(3): 958-973, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35872572

RESUMO

Suberin in roots acts as a physical barrier preventing water/mineral losses. In Arabidopsis, root suberization is regulated by abscisic acid (ABA) and ethylene in response to nutrient stresses. ABA also mediates coordination between microbiota and root endodermis in mineral nutrient homeostasis. However, it is not known whether this regulatory system is common to plants in general, and whether there are other key molecule(s) involved. We show that serotonin acts downstream of ABA in regulating suberization in rice and Arabidopsis and negatively regulates suberization in rice roots in response to salinity. We show that ABA represses transcription of the key gene (OsT5H) in serotonin biosynthesis, thus promoting root suberization in rice. Conversely, overexpression of OsT5H or supplementation with exogenous serotonin represses suberization and reduces tolerance to salt stress. These results identify an ABA-serotonin regulatory module controlling root suberization in rice and Arabidopsis, which is likely to represent a general mechanism as ABA and serotonin are ubiquitous in plants. These findings are of significant importance to breeding novel crop varieties that are resilient to abiotic stresses and developing strategies for production of suberin-rich roots to sequestrate more CO2 , helping to mitigate the effects of climate change.


Assuntos
Arabidopsis , Oryza , Ácido Abscísico/farmacologia , Arabidopsis/fisiologia , Dióxido de Carbono/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Salinidade , Tolerância ao Sal , Serotonina/farmacologia , Estresse Fisiológico , Água/farmacologia
10.
J Sci Food Agric ; 102(11): 4724-4735, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35211988

RESUMO

BACKGROUND: Improper disposal of stevia residue causes environmental pollution and waste of resources. The extract of stevia residue is rich in chlorogenic acid and isochlorogenic acids, and has a great potential in livestock and poultry breeding. Therefore, this study aimed to investigate the effects of dietary stevia residue extract (SRE) supplementation on the performance, meat quality, antioxidative capacity and gut microbiota in growing-finishing pigs. RESULTS: The results showed that increasing the concentration of SRE supplementation linearly increased (P < 0.05) body weight from day 1 to 35. Supplementation with SRE significantly increased (P < 0.05) average daily gain (ADG) from day 1 to 75. 100 mg kg-1 SRE supplementation significantly increased (P < 0.05) hot carcass weight and gastric index. Moreover, increasing the concentration of SRE linearly increased (P < 0.05) the score of appearance of longissimus thoracis, as well as serum albumin, triglyceride and high-density lipoprotein cholesterol content. Further study found that increasing the concentration of SRE linearly increased (P < 0.05) serum total superoxide dismutase activity, and showed a significant quadratic relationship (P < 0.05) with activity of serum catalase, while linearly decreasing (P < 0.05) muscle malondialdehyde (MDA) content. Furthermore, supplementation with 100 mg kg-1 SRE significantly decreased (P < 0.05) serum MDA content, while 600 and 800 mg kg-1 SRE supplementation significantly decreased (P < 0.05) muscle MDA content. However, SRE supplementation had no significant effect on gut microbiota (P > 0.05). CONCLUSION: These data indicated that dietary SRE supplementation improves the performance and antioxidative capacity of growing-finishing pigs. We recommend that the optimal supplemental level of SRE in the diet of growing-finishing pigs is 100 mg kg-1 . © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Stevia , Ração Animal/análise , Suplementos Nutricionais , Carne/análise , Melhoramento Vegetal , Extratos Vegetais , Suínos
11.
J Sci Food Agric ; 102(3): 940-948, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34265089

RESUMO

BACKGROUND: The beneficial function of phytase and 25-hydroxyvitamin D3 (HyD) on the feed utilization rate has been widely investigated. However, studies concerning its influence on weaned piglets largely lag behind. The aim of this study was to investigate the effects of phytase and HyD supplementation on the growth performance and bone development in weaned piglets under dietary Ca and P deficiency. RESULTS: The results showed that dietary Ca and P deficiency decreased (P < 0.05) the content of serum P in 6-10 kg piglets, as well as reducing (P < 0.05) the contents of serum Ca and P, average daily gain (ADG), bone mineral density (BMD), breaking force (BF), bone ash and femur Ca in 10-20 kg piglets. Compared with the control group, the feed-to-gain ratio (F/G) of 6-10 kg piglets in the Phy group was decreased (P < 0.05), whereas the ADG, blood Ca and P, BMD, BF, bone ash, P apparent digestibility, Ca and P retention rate of 10-20 kg piglets were increased (P < 0.05). The contents of serum osteocalcin and HyD in 6-10 kg piglets and ADG were higher than in the control group (P < 0.05), as well as the contents of serum Ca and HyD in 10-20 kg piglets in the HyD treatment group. Supplementation with both Phy and HyD decreased the F/D (P < 0.05) and increased the contents of serum Ca, P and HyD in 6-10 kg piglets as well as enhancing the ADG, BMD, BF, bone ash, femur Ca and P, serum Ca and P, HyD, and the apparent digestibility and retention of Ca and P (P < 0.05) in 10-20 kg piglets. Supplementation with Phy and HyD in Ca- and P-deficient dietary decreased bone resorption, and improved tight arrangement of collagen fibers and oblique fibers in weaned piglets. CONCLUSION: These data indicated that supplementation with both 1500 U kg-1 Phy and 50 µg kg-1 HyD could enhance dietary Ca and P utilization and promote bone development in low Ca and P dietary, and supplementation with both Phy and HyD had a significant synergy effect compared to single supplement. © 2021 Society of Chemical Industry.


Assuntos
6-Fitase/metabolismo , Desenvolvimento Ósseo , Calcifediol/metabolismo , Cálcio/deficiência , Fósforo/deficiência , Suínos/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Densidade Óssea , Osso e Ossos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Masculino , Suínos/metabolismo
12.
Bioelectromagnetics ; 42(6): 464-472, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34130351

RESUMO

Acute lung injury (ALI) features dysregulated pulmonary inflammation. Ultrashort waves (USWs) exert anti-inflammatory effects but no studies have evaluated their activity in ALI. Herein, we used an in vivo lipopolysaccharide (LPS)-induced ALI model to investigate whether the anti-inflammatory activity of USWs is mediated by altering the polarization of M1 to M2 macrophages. Twenty-four male Sprague-Dawley rats were randomly divided into control, untreated ALI, and ALI treated with USW groups (n = 8 in each group). ALI was induced by intratracheal LPS instillation. Rats in the USW group were treated for 15 min at 0, 4, and 8 h after a single LPS intratracheal instillation. Histopathologic examination, wet/dry lung weight ratio, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and western blot analyses were performed to evaluate the degree of lung injury and to determine macrophage phenotypes. Histopathologic examination disclosed attenuation of ALI, with reduced alveolar hemorrhage and neutrophilic infiltration in the USW group. Serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were significantly decreased after USW therapy. Moreover, the messenger RNA (mRNA) expressions of TNF-α and IL-1ß were significantly decreased in the USW group, whereas the mRNA expression of Arginase 1 (Arg1) and the protein expression of mannose receptor significantly increased in comparison with the untreated ALI group. We conclude that USW therapy may attenuate inflammation in LPS-induced ALI through the modulation of macrophage polarization. © 2021 Bioelectromagnetics Society.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Animais , Inflamação/induzido quimicamente , Lipopolissacarídeos , Pulmão , Macrófagos , Masculino , Ratos , Ratos Sprague-Dawley
13.
Anim Nutr ; 6(1): 98-106, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211535

RESUMO

As major fuels for the small intestinal mucosa, dietary amino acids (AA) are catabolized in the mitochondria and serve as sources of energy production. The present study was conducted to investigate AA metabolism that supply cell energy and the underlying signaling pathways in porcine enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were treated with different concentrations of AA, inhibitor, or agonist of mammalian target of rapamycin complex 1 (mTORC1) and adenosine monophosphate activated protein kinase (AMPK), and mitochondrial respiration was monitored. The results showed that AA treatments resulted in enhanced mitochondrial respiration, increased intracellular content of pyruvic acid and lactic acid, and increased hormone-sensitive lipase mRNA expression. Meanwhile, decreased citrate synthase, isocitrate dehydrogenase alpha, and carnitine palmitoyltransferase 1 mRNA expression were also observed. We found that AA treatments increased the protein levels of phosphorylated mammalian target of rapamycin (p-mTOR), phosphorylated-p70 ribosomal protein S6 kinase, and phosphorylated-4E-binding protein 1. What is more, the protein levels of phosphorylated AMPK α (p-AMPKα) and nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-1 (SIRT1) were decreased by AA treatments in a time depending manner. Mitochondrial bioenergetics and the production of tricarboxylic acid cycle intermediates were decreased upon inhibition of mTORC1 or AMPK. Moreover, AMPK activation could up-regulate the mRNA expressions of inhibitor of nuclear factor kappa-B kinase subunit beta (Ikbkß), integrin-linked protein kinase (ILK), unconventional myosin-Ic (Myo1c), ribosomal protein S6 kinase beta-2 (RPS6Kß2), and vascular endothelial growth factor (VEGF)-ß, which are downstream effectors of mammalian target of rapamycin (mTOR). The mRNA expressions of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform (PIK3CD) and 5'-AMP-activated protein kinase subunit gamma-1 (PRKAG1), which are upstream regulators of mTOR, were also up-regulated by AMPK activation. On the other hand, AMPK activation also down-regulated FK506-binding protein 1A (FKBP1A), serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform, phosphatase and tensin homolog (PTEN), and unc-51 like autophagy activating kinase 1 (Ulk1), which are up-stream regulators of mTORC1. Taken together, these data indicated that AA regulated cellular energy metabolism through mTOR and AMPK pathway in porcine enterocytes. These results demonstrated interactions of AMPK and mTORC1 pathways in AA catabolism and energy metabolism in intestinal mucosa cells of piglets, and also provided reference for using AA to remedy human intestinal diseases.

14.
Int Immunopharmacol ; 81: 106029, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31757675

RESUMO

Arginine supplementation improves intestinal damage and intestinal immunity, but the underlying mechanism of the effects of arginine supplementation on intestinal SIgA secretion is largely unknown. Therefore, this study was conducted to investigate the underlying pathway on the effects of arginine supplementation in secretory IgA (SIgA) production in mice. The results showed that 0.4% arginine supplementation promoted (P < 0.05) SIgA production in intestinal lumina and IgA+ plasma cell numbers in the ileum of mouse. Arginine supplementation significantly increased (P < 0.05) cytokines expression in mouse ileal associated with T cell-dependent and T cell-independent pathways of SIgA induction, including IL-5, IL-6, IL-13, transforming growth factor (TGF-)ß2, TGF-ß3, TGF-ßR2, a proliferation-inducing ligand (APRIL), B cell-activating factor (BAFF), vasoactive intestinal peptide (VIP) receptor, and retinal dehydrogenases. Further study showed that 0.4% arginine supplementation markly decreased (P < 0.05) bacterial loads in mouse mesenteric lymph nodes and increased bacterial invasion into the mouse ileal wall, while supplementation of antibiotic abrogated the influence of arginine supplementation on SIgA secretion. Therefore, these data suggest that arginine supplementation might promote SIgA secretion through cytokines and intestinal microbiota might play an important role in SIgA secretion by arginine supplementation in the mouse intestine.


Assuntos
Arginina/administração & dosagem , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Imunoglobulina A Secretora/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Administração Oral , Animais , Citocinas/metabolismo , Feminino , Microbioma Gastrointestinal/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Modelos Animais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
15.
Chin J Integr Med ; 26(12): 921-928, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31630361

RESUMO

OBJECTIVE: To analyze the effective components of Chinese medicine (CM) contained in Chaihu Shugan Powder (, CSP) in the treatment of depressive disorders and to predict its anti-depressant mechanism by network pharmacology. METHODS: Absorption, distribution, metabolism, excretion, and toxicity calculation method was used to screen the active components of CSP. Traditional Chinese Medicine System Pharmacological Database Analysis Platform and text mining tool (GoPuMed database) were used to predict and screen the active ingredients of CSP and anti-depressive targets. Through Genetic Association Database, Therapeutic Target Database, and PharmGkb database targets for depression were obtained. Cytoscape3.2.1 software was used to establish a network map of the active ingredients-targets of CSP, and to analyze gene function and metabolic pathways through Database for Annotation, Visualization and Integrated Discovery and the Omicshare database. RESULTS: The 121 active ingredients and 15 depression-related targets which were screened from the database can exert antidepressant effects by improving the neural plasticity, growth, transfer condition and gene expression of neuronal cell, and the raise of the expression of gap junction protein. The 15 targets passed 14 metabolic pathways, mainly involved in the regulation of neurotransmitters (5-hydroxytryptamine, dopamine and epinephrine), inflammatory mediator regulation of TRP channels, calcium signaling pathway, cyclic adenosine monophosphate signaling pathway and neuroactive ligand-receptor interaction and other signal channels to exert anti-depressant effects. CONCLUSION: This article reveals the possible mechanism of CSP in the treatment of depression through network pharmacology research, and lays a foundation for further target studies.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Antidepressivos/química , Medicamentos de Ervas Chinesas/química , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Pós
16.
Artigo em Inglês | WPRIM | ID: wpr-880501

RESUMO

OBJECTIVE@#To analyze the effective components of Chinese medicine (CM) contained in Chaihu Shugan Powder (, CSP) in the treatment of depressive disorders and to predict its anti-depressant mechanism by network pharmacology.@*METHODS@#Absorption, distribution, metabolism, excretion, and toxicity calculation method was used to screen the active components of CSP. Traditional Chinese Medicine System Pharmacological Database Analysis Platform and text mining tool (GoPuMed database) were used to predict and screen the active ingredients of CSP and anti-depressive targets. Through Genetic Association Database, Therapeutic Target Database, and PharmGkb database targets for depression were obtained. Cytoscape3.2.1 software was used to establish a network map of the active ingredients-targets of CSP, and to analyze gene function and metabolic pathways through Database for Annotation, Visualization and Integrated Discovery and the Omicshare database.@*RESULTS@#The 121 active ingredients and 15 depression-related targets which were screened from the database can exert antidepressant effects by improving the neural plasticity, growth, transfer condition and gene expression of neuronal cell, and the raise of the expression of gap junction protein. The 15 targets passed 14 metabolic pathways, mainly involved in the regulation of neurotransmitters (5-hydroxytryptamine, dopamine and epinephrine), inflammatory mediator regulation of TRP channels, calcium signaling pathway, cyclic adenosine monophosphate signaling pathway and neuroactive ligand-receptor interaction and other signal channels to exert anti-depressant effects.@*CONCLUSION@#This article reveals the possible mechanism of CSP in the treatment of depression through network pharmacology research, and lays a foundation for further target studies.

17.
Amino Acids ; 51(10-12): 1547-1559, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31720834

RESUMO

Mammary gland development during late pregnancy in sows is a major factor affecting the composition of colostrum and milk and the pre-weaning growth of piglets, while valine is essential for protein and nitrogen metabolism in mammary gland of sow. However, the effects of valine and its underlying mechanism on mammary gland development during late pregnancy are still unclear. Here, we hypothesized that dosage of dietary valine during late pregnancy will affect protein synthesis of colostrum in gilts. The results showed that supplementation of valine during late pregnancy significantly increased content of protein (P < 0.01), fat (P = 0.02) and solids-non-fat (P = 0.04) in colostrum. Our in vitro study also confirmed that valine supplementation increased protein synthesis and cell proliferation in porcine mammary epithelial cells (PMEC). Furthermore, these changes were associated with elevated phosphorylation levels of mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (S6) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) in valine-supplemented cells, which could be effectively blocked by the antagonists of mTOR. These findings indicated that valine enhanced mammary gland development and protein synthesis in colostrum via the mTOR signaling pathway. These results, using an in vivo and in vitro model, helped to understand the beneficial effects of dietary valine supplementation on gilts.


Assuntos
Colostro/química , Suplementos Nutricionais , Glândulas Mamárias Animais/metabolismo , Biossíntese de Proteínas , Sus scrofa/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem , Ração Animal/análise , Animais , Linhagem Celular , Proliferação de Células , Dieta/veterinária , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Fosforilação , Gravidez , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Valina/metabolismo
18.
Food Funct ; 10(11): 7387-7396, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651917

RESUMO

Lactobacillus reuteri LR1 improved growth performance of weaned pigs in our previous study. The objective of this study was to reveal effects of L. reuteri LR1 on amino acid (AA) metabolism in weaned pigs and its underlying mechanism using metabolomic and proteomics methods. Weaned pigs were fed a basal diet (CON) or the basal diet supplemented with 5 × 1010 cfu kg-1L. reuteri LR1 (LR1) for a 14 d period. Untargeted metabolomic analysis of the liver showed that LR1 up-regulated 33 metabolites and most of them were related to AA metabolism. Quantitative proteomics found that differential proteins were mainly involved in a metabolic process in the ileal mucosa of LR1 vs. CON. Integrated metabolomic and proteomics analysis showed that the LR1's enhancement of AA metabolism in the gut-liver axis is mediated by the up-regulated intestinal AA transporters in the pathway of protein digestion and absorption. Moreover, qPCR results confirmed that LR1 increased (p < 0.05) mRNA abundances of AA transporters (PepT1, EAAT3, rBAT, B0AT1, and b0,+AT) in the ileal mucosa compared with CON. Furthermore, western blot analysis showed that LR1 activated the mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway by increasing the phosphorylation of S6 and 70S6K1 in the gut-liver axis of weaned pigs. Together, these data indicated that dietary supplemented LR1 enhanced AA metabolism by up-regulating intestinal AA transporter expression and activating the mTORC1 signaling pathway in the gut-liver axis of weaned pigs.


Assuntos
Aminoácidos/metabolismo , Trato Gastrointestinal/metabolismo , Limosilactobacillus reuteri/fisiologia , Fígado/metabolismo , Suínos/metabolismo , Animais , Metabolômica , Suínos/microbiologia , Transcriptoma
19.
Biol Reprod ; 101(1): 126-137, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985894

RESUMO

Lactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts. Further study in porcine mammary epithelial cells (PMECs) confirmed that valine upregulated the phosphorylation levels of AKT-activated MTOR and subsequently induced the nuclear accumulation of sterol regulatory element binding protein 1 (SREBP1), thus increasing the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Inhibition of AKT/MTOR signaling or silencing of SREBP1 in PMECs downregulates the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Our findings indicated that valine enhanced milk fat synthesis of colostrum in porcine mammary glands via the AKT/MTOR/SREBP1 signaling pathway.


Assuntos
Ácidos Graxos/metabolismo , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Leite/efeitos dos fármacos , Suínos , Valina/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Células Cultivadas , Suplementos Nutricionais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Lactação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/química , Leite/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem
20.
Medicine (Baltimore) ; 98(8): e14515, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30813153

RESUMO

BACKGROUND: Previous clinical studies have reported that electrical stimulation (ES) can be utilized to treat children with limbs spasticity (LS) after traumatic brain injury (TBI). Currently, no systematic review has addressed the effect of ES in children with LS following TBI. Thus, this systematic review will assess the effect and safety of ES for the children with LS after TBI. METHODS: We will conduct the present systematic review of randomized controlled trials that will be retrieved from searches of PubMed, PsycINFO, WOS, Scopus, OpenGrey, Google Scholar, Cochrane Central Register of Controlled Trials, Embase, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, and Chinese Biomedical Literature Database from the inception to the date of the literature searched. In addition, the clinical register websites, and reference lists of relevant studies will also be searched. Two independent reviewers will evaluate the eligibility criteria for all papers, extract the data and determine the methodology quality by using Cochrane risk of bias tool. RESULTS: The results of this systematic review will pool the latest available data, and are expected to provide the summary of present evidence of ES for children with LS following TBI. TIMELINE: This systematic review will start on January 10, 2019 and expected to complete by June 1, 2019. ETHICS AND DISSEMINATION: No research ethic approval is needed in this study, because the data of this systematic review will not base on the individual data level. The results will be disseminated to publish at peer-reviewed journals or will present at relevant conferences. PROSPERO REGISTRATION NUMBER: CRD42019120037.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia por Estimulação Elétrica/métodos , Espasticidade Muscular/terapia , Lesões Encefálicas Traumáticas/complicações , Criança , Humanos , Espasticidade Muscular/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA