Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 772: 144951, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571760

RESUMO

Leaf resorption is critical for considerations of how plants use and recycle nutrients, but fundamental unknowns remain regarding the controls over plant nutrient resorption. Empirical studies suggest at least three basic types of resorption control, including (i) stoichiometric control, (ii) nutrient limitation control, and (iii) nutrient concentration control strategies. However, which strategies are adopted in given conditions and whether multiple strategies coexist in an ecosystem are still open questions. To address these unknowns, leaf nitrogen (N) and phosphorus (P) resorption efficiency (NRE and PRE) and proficiency were measured for seven woody species at a nutrient-rich but potentially N-limited secondary forest and a nutrient-poor and potentially P-limited secondary forest. NRE was higher in the N-limited forest while PRE was higher in the P-limited forest, suggesting that plants responded to nutrient limitation with preferential resorption of the more limiting nutrient. NRE:PRE was positively related to leaf N:P ratios within each forest, demonstrating a role for stoichiometric control. Nutrient concentration controls were also found, with higher nutrient resorption proficiency in the nutrient-poor forest than in the nutrient-rich forest. The controls of stoichiometry and nutrient concentration were community-wide, but the nutrient limitation control was species-specific. Our results highlight the coexistence of multiple nutrient resorption strategies in a single ecosystem, and suggest these strategies are scale-dependent.


Assuntos
Ecossistema , Fósforo , Nitrogênio , Nutrientes , Folhas de Planta , Plantas , Solo
2.
Sci Total Environ ; 708: 135201, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796274

RESUMO

Selenium (Se) is an essential micronutrient for human health, and its abundance and potential bioavailability in the soil are of increasing concern worldwide. To date, how total soil Se and its bioavailability would respond to human disturbance or future environmental change is not yet clear, and associated controlling factors remain incompletely understood. Here, we collected soil samples (0-15 cm) from different land use/land cover types, including active cropland, grassland, shrubland, and secondary forest, in a Se-enriched area of Guangxi, southwest China. Total Se concentration and its potential bioavailability, as estimated by phosphate extractability, were investigated. Total soil Se concentration (Setotal) for all samples ranged from 220 to 1820 µg kg-1, with an arithmetic average value of 676 ± 24 µg kg-1 (Mean ± SE, the same below). The concentration of phosphate extractable Se (Sephosphate) varied between 1 and 257 µg kg-1, with an arithmetic mean value of 79 ± 5 µg kg-1, accounting for on average 13 ± 1% of the Setotal. Among the four land use/land cover types, Setotal and Sephosphate were generally more enriched in the secondary forest than those in the grassland and cropland. The content of soil organic carbon (SOC) was the overriding edaphic factor controlling the abundance and potential bioavailability of Se in topsoils. In addition, climatic variables such as mean annual precipitation and mean annual temperature were also key factors affecting the abundance and potential bioavailability of soil Se. Our results suggest that changes in land use/land cover types may deeply influence Se biogeochemistry likely via alterations in soil properties, particularly SOC content.


Assuntos
Selênio/análise , Agricultura , Disponibilidade Biológica , Carbono , China , Solo
3.
Sci Total Environ ; 650(Pt 1): 241-248, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30199669

RESUMO

Knowledge about resource limitation to soil microbes is crucial for understanding ecosystem functions and processes, and for predicting ecosystem responses to global changes as well. Karst ecosystems are widespread in the world, and play a key role in regulating the global climate, however, the patterns of and mechanisms underlying microbial resource limitation in karst ecosystems remain poorly known. Here we investigated the microbial resource limitation in a karst region, by selecting four main land-use types, i.e. cropland, grassland, shrubland and secondary forest, in areas underlain by two lithology types, i.e. dolomite and limestone, in southwest China. Ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation. Overall, soil microbes in karst ecosystems were more limited by carbon and phosphorus, rather than by nitrogen. Further analyses revealed that the patterns of carbon and phosphorus limitation were different among land-use or lithology types. Microbial carbon limitation was greatest in cropland and forest but lowest in grassland, and was greater under dolomite than under limestone. Microbial phosphorus limitation decreased from secondary forest to cropland under dolomite areas, but showed no difference among ecosystem types under limestone areas, indicating that lithology controls the pattern of microbial phosphorus limitation along the post-agriculture succession. Our study describes a general pattern of microbial resource limitation in karst ecosystems, and we suggest that lithology may provide a new mechanism for explaining the variations of microbial resource limitation along the post-agriculture succession in different regions.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , China
4.
Chemosphere ; 202: 560-566, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29597172

RESUMO

Information on the bioaccumulation of selenium (Se) in soil invertebrates (e.g. earthworms) is rather scarce. In the present study, bioaccumulation of Se in two eco-physiologically different earthworms, namely anecic Pheretima guillemi and epigeic Eisenia fetida, was determined after 28 days exposure to a successive doses of Se-spiked soil, specifically 0.5, 5, 50, and 200 µg Se g-1 soil. The results showed that Se concentration in earthworms elevated with increasing exposure levels, and maximums were up to 54.6 and 83.0 µg g-1 dry weight in Pheretima guillemi and Eisenia fetida, respectively, after 4 weeks exposure to 200 µg Se g-1 soil. Exposure to Se caused significant inhibition on earthworm growth, with the fresh weight loss ranging from 8.9% to 80.5%. Bioaccumulation factors (BAFs), empirically-derived and non-steady state, ranged from 0.12 to 4.17 and generally declined at higher exposure levels. Moreover, BAFs of Pheretima guillemi were higher than those of Eisenia fetida in low-dose Se-spiked soils, but the opposite was true in high-dose soils, indicating there is a species-specific response to exposure of Se between different earthworms. Further research is thus needed to reveal the accumulation pattern of Se in a wider range of earthworm species other than Eisenia fetida, which allows a better risk assessment of excessive Se to soil invertebrates and higher order organisms.


Assuntos
Oligoquetos/metabolismo , Selênio/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Animais , Oligoquetos/crescimento & desenvolvimento , Medição de Risco , Selênio/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA