Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2089, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453961

RESUMO

Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.


Assuntos
Hipertermia Induzida , Neoplasias Ovarianas , Feminino , Humanos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Multiômica , Mitose , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia
2.
Cell Rep ; 41(13): 111890, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577369

RESUMO

Ovarian cancer (OC) remains a clinical challenge for its difficulty in early diagnosis and insensitivity to treatments. Gut microbiota modulate multiple carcinoma progression through immunoregulation. The relationship between OC and gut microbiota has not been fully characterized. We find that the feces of patients with OC demonstrate different characteristics from benign controls. After fecal microbiota transplantation (FMT) from patients with OC into OC-bearing mice, the tumor development accelerates. Further, an Akkermansia supplementation with FMT significantly suppresses OC progression in mice. RNA sequencing of tumors shows that T cell activation pathways are upregulated after Akkermansia supplementation with FMT. Moreover, acetate accumulation accompanies Akkermansia abundance elevation, which is associated with enhanced interferon γ (IFNγ) secretion of CD8+ T cells and also its tumor-killing property. This work highlights the importance of protective gut microbiome in immune surveillance of OC, which connects accumulation of acetate and the cytotoxic function of CD8+ T cells by increasing IFNγ secretion.


Assuntos
Transplante de Microbiota Fecal , Neoplasias Ovarianas , Camundongos , Animais , Feminino , Humanos , Akkermansia , Linfócitos T CD8-Positivos , Fezes , Neoplasias Ovarianas/terapia , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA