Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Harmful Algae ; 107: 102058, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34456019

RESUMO

Eutrophication in coastal waters caused by excess nutrient inputs has occurred widely on a global scale. Due to the rapid economic development over the last four decades, most of the Chinese coastal waters have experienced a eutrophic process. Major observed trends of coastal eutrophication include two periods, a slow development from the 1970s to 1990s and a fast development after 2000, with major contributions of increased nitrogen (N) and phosphorus (P) from river inputs, atmospheric deposition, and submarine groundwater discharge (SGD). Nutrient composition and stoichiometry have been significantly changed, including increased ammonium, bioavailable organic N and P, and asymmetric ratios between N, P and silicate (Si). Most of these changes were related to the rapid increases in population density, fertilizer application, sewage discharge, aquaculture and fossil fuel combustion, and have resulted in distinctly increased harmful algal blooms. Coastal eutrophication combined with the effects of climate change is projected to continually grow in coming decades. Targeted research is therefore needed on nitrogen reduction and control, potential adaptation strategies and the consequences for ecosystems and economic sustainability.


Assuntos
Ecossistema , Água Subterrânea , China , Eutrofização , Fósforo/análise
2.
Mar Pollut Bull ; 149: 110507, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421568

RESUMO

This study focused on the bloom-developing process of the giant jellyfish, Nemopilema nomurai, on phytoplankton and microzooplankton communities. Two repeated field observations on the jellyfish bloom were conducted in June 2012 and 2014 in the southern Yellow Sea where blooms of N. nomurai were frequently observed. We demonstrated that the bloom was made up of two stages, namely the developing stage and the mature stage. Total chlorophyll a increased and the concentrations of inorganic nutrients decreased during the developing stage, while both concentrations maintained stable and at low levels during the mature stage. Our analysis revealed that phosphate excreted by growing N. nomurai promoted the growth of phytoplankton at the developing stage. At the mature stage, size compositions of microzooplankton were altered and tended to be smaller via a top-down process, while phytoplankton compositions, affected mainly through a bottom-up process, shifted to be less diatoms and cryptophytes but more dinoflagellates.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Cifozoários/fisiologia , Zooplâncton/fisiologia , Animais , Biomassa , China , Clorofila A/análise , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Oceanos e Mares , Fosfatos/metabolismo
3.
Biotechnol Biofuels ; 11: 273, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305846

RESUMO

BACKGROUND: Organic carbon sources have been reported to simultaneously increase the growth and lipid accumulation in microalgae. However, there have been no studies of the mixotrophic growth of Porphyridium purpureum in organic carbon media. In this study, three organic carbon sources, glucose, sodium acetate, and glycerol were used as substrates for the mixotrophic growth of P. purpureum. Moreover, a novel trait-based approach combined with Generalized Additive Modeling was conducted to determine the dosage of each organic carbon source that optimized the concentration of cell biomass or fatty acid. RESULTS: A 0.50% (w/v) dosage of glucose was optimum for the enhancement of the cell growth of P. purpureum, whereas sodium acetate performed well in enhancing cell growth, arachidonic acid (ARA) and eicosapentaenoic acid (EPA) content, and glycerol was characterized by its best performance in promoting both cell growth and ARA/EPA ratio. The optimum dosages of sodium acetate and glycerol for the ARA concentration were 0.25% (w/v) and 0.38% (v/v), respectively. An ARA concentration of 211.47 mg L-1 was obtained at the optimum dosage of glycerol, which is the highest ever reported. CONCLUSIONS: The results suggested that a comprehensive consider of several traits offers an effective strategy to select an optimum dosage for economic and safe microalgae cultivation. This study represents the first attempt of mixotrophic growth of P. purpureum and proved that both biomass and ARA accumulation could be enhanced under supplements of organic carbon sources, which brightens the commercial cultivation of microalgae for ARA production.

4.
Water Res ; 128: 206-216, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107905

RESUMO

Temperature change and eutrophication are known to affect phytoplankton communities, but relatively little is known about the effects of interactions between simultaneous changes of temperature and nutrient loading in coastal ecosystems. Here we show that such interaction is key in driving diatom-dinoflagellate dynamics in the East China Sea. Diatoms and dinoflagellates responded differently to temperature, nutrient concentrations and ratios, and their interactions. Diatoms preferred lower temperature and higher nutrient concentrations, while dinoflagellates were less sensitive to temperature and nutrient concentrations, but tended to prevail at low phosphorus and high N:P ratio conditions. These different traits of diatoms and dinoflagellates resulted in the fact that both the effect of warming resulting in nutrients decline as a consequence of increasing stratification and the effect of increasing terrestrial nutrient input as a result of eutrophication might promote dinoflagellates over diatoms. We predict that conservative forecasts of environmental change by the year 2100 are likely to result in the decrease of diatoms in 60% and the increase of dinoflagellates in 70% of the surface water of the East China Sea, and project that mean diatoms should decrease by 19% while mean dinoflagellates should increase by 60% in the surface water of the coastal East China Sea. This analysis is based on a series of statistical niche models of the consequences of multiple environmental changes on diatom and dinoflagellate biomass in the East China Sea based on 2815 samples randomly collected from 23 cruises spanning 14 years (2002-2015). Our findings reveal that dinoflagellate blooms will be more frequent and intense, which will affect coastal ecosystem functioning.


Assuntos
Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Modelos Teóricos , Biomassa , Carotenoides/metabolismo , Ecossistema , Eutrofização , Aquecimento Global , Nitrogênio/metabolismo , Oceanos e Mares , Fósforo/metabolismo , Fitoplâncton , Temperatura , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA