Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111692

RESUMO

Abnormal tumor vasculature and a hypoxic tumor microenvironment (TME) limit the effectiveness of conventional cancer treatment. Recent studies have shown that antivascular strategies that focus on antagonizing the hypoxic TME and promoting vessel normalization effectively synergize to increase the antitumor efficacy of conventional therapeutic regimens. By integrating multiple therapeutic agents, well-designed nanomaterials exhibit great advantages in achieving higher drug delivery efficiency and can be used as multimodal therapy with reduced systemic toxicity. In this review, strategies for the nanomaterial-based administration of antivascular therapy combined with other common tumor treatments, including immunotherapy, chemotherapy, phototherapy, radiotherapy, and interventional therapy, are summarized. In particular, the administration of intravascular therapy and other therapies with the use of versatile nanodrugs is also described. This review provides a reference for the development of multifunctional nanotheranostic platforms for effective antivascular therapy in combined anticancer treatments.

2.
Mater Today Bio ; 15: 100297, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35637855

RESUMO

Intratumoral immunotherapeutic hydrogel administration is emerging as an effective method for inducing a durable and robust antitumor immune response. However, scaffold hydrogels that can synergize with the loaded drugs, thus potentiating therapeutic efficacy, are limited. Here, we report a ternary hydrogel composed of polyvinyl alcohol (PVA), polyethylenimine (PEI)‒a cationic polymer with potential immunoactivation effects, and magnesium ions‒a stimulator of the adaptive immune response, which exhibits an intrinsic immunomodulation function of reversing the immunologically "cold" phenotype of a murine breast tumor to a "hot" phenotype by upregulating PD-L1 expression and promoting M1-like macrophage polarization. PEI hydrogel (PEIGel) encapsulating an immune checkpoint blockade (ICB) inhibitor‒anti-PD-L1 antibody (α-PDL1) exhibits synergistic effects resulting in elimination of primary tumors and remote metastases and prevention of tumor relapse after surgical resection. A preliminary mechanistic study revealed a probably hidden role of PEI in modulating the polyamine metabolism/catabolism of tumors to potentiate the immune adjuvant effect. These results deepen our understanding of the innate immune activation function of PEI and pave the way for harnessing PEI as an immune adjuvant for ICB therapy.

3.
Biomaterials ; 282: 121381, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35123320

RESUMO

Photothermal therapy (PTT) has received increasing attention for treating tumors. However, a long-standing challenge in PTT is non-uniform distribution of photothermal agents (PAs) in tumor tissues, resulting in limited therapeutic efficiency. Herein, inspired by dandelions blowing away by the wind, we have designed a DNA-assembled visible GRS-DNA-CuS nanodandelion, which can achieve uniform intra-tumor distribution (UITD) of PAs, thus enhancing the photothermal therapeutic efficiency. GRS-DNA-CuS is featured by the formation of hydrogen bond between the core of single-strand DNA-modified Raman nanoprobes (GRS) and the shell of complementary single-strand DNA-modified CuS PAs. Under Raman imaging-guided 1st NIR irradiation, hydrogen bond in GRS-DNA-CuS is explosively broken, resulting in large-sized GRS-DNA-CuS (∼135 nm) be completely dissociated into GRS and ultra-small CuS PAs (∼12 nm) within 1 min. Such an explosive dissociation instantly enhances the local concentration of ultra-small CuS PAs and slightly rises intra-tumor temperature, thus increasing the diffusion coefficient of PAs and promoting their UITD. This UITD of CuS PAs enhances the photothermal anti-tumor effects. Three out of five tumors are completely eliminated under photoacoustic imaging-guided 2nd NIR irradiation. Overall, this study provides one UITD-guided PTT strategy for highly effective tumor treatment by exerting explosive breakage property of hydrogen bond, broadening the application scope of DNA-assembly technique in oncology field.


Assuntos
Substâncias Explosivas , Nanopartículas , Neoplasias , Cobre/química , DNA/uso terapêutico , Humanos , Hidrogênio/uso terapêutico , Ligação de Hidrogênio , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fototerapia , Terapia Fototérmica
4.
ACS Appl Mater Interfaces ; 11(26): 23436-23444, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252485

RESUMO

Surface-enhanced Raman scattering (SERS) probes have exhibited great potential in biomedical applications. However, currently reported SERS probes are mainly fabricated by nondegradable Au or Ag nanostructures, which are not favorably cleared from the imaged tissues. This bottleneck hinders their in vivo applications. We herein explore a degradable SERS probe consisting of hollow CuS nanoparticles (NPs) to circumvent the current limitation. We identify, for the first time, the Raman enhancement effects of hollow CuS NPs as a SERS probe for Raman imaging of residual tumor lesions. Uniquely, CuS SERS probes are degradable, which stems from laser-induced photothermal effects of CuS NPs, leading to their disintegration from shell structures into individual crystals, thus facilitating their self-clearance from imaged tissues. This novel CuS SERS probe with photodegradation characteristics opens avenues for applying Raman imaging toward a myriad of biomedical applications.


Assuntos
Complicações Intraoperatórias/diagnóstico , Nanopartículas Metálicas/química , Neoplasia Residual/diagnóstico , Linhagem Celular Tumoral , Cobre/química , Ouro/química , Humanos , Complicações Intraoperatórias/patologia , Nanoestruturas/química , Neoplasia Residual/patologia , Fotólise , Prata/química , Análise Espectral Raman
5.
Phytomedicine ; 58: 152824, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30836218

RESUMO

BACKGROUND: Excess alcohol exposure leads to alcoholic liver disease (ALD). Pueraria lobata (PUE) and Silybum marianum (SIL) are two well-known hepatoprotective herbal remedies with various activities. The possible effect of combination of PUE and SIL on ALD has not been elucidated yet. PURPOSE: We aimed to demonstrate that the combination of PUE and SIL prevents against alcoholic liver injury in mice using a model of chronic-plus-single-binge ethanol feeding. STUDY DESIGN: Male C57BL/6 mice were randomly divided into five groups (n = 8-10), namely the control group (CON), ethanol-induced liver injury group (ETH), 150 mg/kg PUE treated group (PUE), 60 mg/kg SIL treated group (SIL), 210 mg/kg PUE+SIL treatment group (PUE+SIL). Except control group, all animals were fed a modified Lieber-DeCarli ethanol liquid diet for 10 days. While, control group received Lieber-DeCarli control diet containing isocaloric maltose dextrin substituted for ethanol. On day 11, the mice orally received a single dose of 31.5% (v/v) ethanol (5 g/kg BW) or an isocaloric maltose solution. RESULTS: Ethanol exposure caused liver injury, as demonstrated by remarkably increased plasma parameters, histopathological changes, the increased lipid accumulation, oxidative stress and inflammation in liver. These alterations were ameliorated by the treatments of PUE, SIL and PUE+SIL. While, the PUE+SIL treatment showed the most effective protection, which was associated with reducing alcohol-induced hepatic steatosis via upregulating LKB1/AMPK/ACC signaling, and inhibiting hepatic inflammation via LPS-triggered TLR4-mediated NF-κB signaling pathway. Our results also indicated that the hepatoprotective effects of SIL+PUE might mainly attribute to the protection of SIL and PUE alone in alcohol-induced hepatic steatosis and hepatic inflammation, respectively. CONCLUSION: These findings also suggest that the combination of PUE and SIL has a potential to be developed as a functional food for the management of ALD.


Assuntos
Hepatopatias Alcoólicas/prevenção & controle , Substâncias Protetoras/farmacologia , Pueraria/química , Transdução de Sinais/efeitos dos fármacos , Silybum marianum/química , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Etanol/efeitos adversos , Fígado Gorduroso Alcoólico/patologia , Fígado Gorduroso Alcoólico/prevenção & controle , Medicina Herbária , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais , Substâncias Protetoras/química , Distribuição Aleatória , Regulação para Cima/efeitos dos fármacos
6.
Crit Rev Food Sci Nutr ; 59(sup1): S116-S129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580553

RESUMO

Excess alcohol exposure leads to alcoholic liver disease (ALD), a predominant cause of liver-related morbidity and mortality worldwide. In the past decade, increasing attention has been paid to understand the association between n-3 polyunsaturated fatty acids (n-3 PUFAs) and ALD. In this review, we summarize the metabolism of n-3 PUFAs, animal model of ALD, and the findings from recent studies determining the role of n-3 PUFAs in ALD as a possible treatment. The animal models of acute ethanol exposure, chronic ethanol exposure and chronic-plus-single binge ethanol feeding have been widely used to explore the impact of n-3 PUFAs. Although the results of studies regarding the role of n-3 PUFAs in ALD have been inconsistent or controversial, increasing evidence has demonstrated that n-3 PUFAs may be useful in alleviating alcoholic steatosis and alcohol-induced liver injury through multiple mechanisms, including decreased de novo lipogenesis and lipid mobilization from adipose tissue, enhanced mitochondrial fatty acid ß-oxidation, reduced hepatic inflammation and oxidative stress, and promoted intestinal homeostasis, positively suggesting that n-3 PUFAs might be promising for the management of ALD. The oxidation of n-3 PUFAs ex vivo in an experimental diet was rarely considered in most n-3 PUFA-related studies, likely contributing to the inconsistent results. Thus, the role of n-3 PUFAs in ALD deserves greater research efforts and remains to be evaluated in randomized, placebo-controlled clinic trial. ABBREVIATION AA arachidonic acid ACC acetyl-CoA carboxylase ACLY ATP-citrate lyase ACO acyl-CoA oxidase ALA α-linolenic acid ALD alcoholic liver disease ALP alkaline phosphatase ALT alanine aminotransferase AMPK AMP-activated protein kinase AST aspartate aminotransferase ATGL adipose triglyceride lipase cAMP cyclic adenosine 3',5'-monophosphate COX cyclooxygenases CPT1 carnitine palmitoyltransferase 1 CYP2E1 cytochrome P450 2E1 DGAT2 diacylglycerol acyltransferase 2 DGLA dihomo-γ-linolenic acid DHA docosahexaenoic acid DPA docosapentaenoic acid DTA docosatetraenoic acid EPA eicosapentaenoic acid ER endoplasmic reticulum ETA eicosatetraenoic acid FAS fatty acid synthase FATPs fatty acid transporter proteins GLA,γ linolenic acid GPR120 G protein-coupled receptor 120 GSH glutathione; H&E haematoxylin-eosin; HO-1 heme oxygenase-1; HSL hormone-sensitive lipase; IL-6 interleukin-6 iNOS nitric oxide synthase LA linoleic acid LBP lipopolysaccharide binding protein LOX lipoxygenases LXR liver X receptor LXREs LXR response elements MCP-1 monocyte chemotactic protein-1 MTP microsomal triglyceride transfer protein MUFA monounsaturated fatty acids MyD88 myeloid differentiation factor 88 n-3 PUFAs omega-3 polyunsaturated fatty acid NAFLD nonalcoholic fatty liver disease NASH nonalcoholic steatohepatitis NF-κB transcription factor nuclear factor κB PDE3B phosphodiesterase 3B PPAR peroxisome proliferator-activated receptor ROS reactive oxygen species RXR retinoid X receptor SCD-1 stearyl CoA desaturase-1 SDA stearidonic acid SFA saturated fatty acids SIRT1 sirtuin 1 SOD superoxide dismutase SREBP sterol regulatory element-binding protein TB total bilirubin TC total cholesterol TG triacylglycerol TLR4 Toll-like receptor-4 TNF-α tumor necrosis factor-α VLDLR very low-density lipoprotein receptor WT wild type; ZO-1 zonula occludens-1.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Hepatopatias Alcoólicas/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas , Modelos Animais de Doenças , Etanol/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Fígado Gorduroso/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase , Humanos , Inflamação/tratamento farmacológico , Mobilização Lipídica , Lipogênese , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA