Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758982

RESUMO

Iron plays a key role in maternal health during pregnancy and fetal growth. Enteromorpha polysaccharide-iron (EP-Fe) as an organic iron chelate may improve the iron transmission of mother and offspring, ameliorate the poor pregnancy outcomes of sows, and alleviate the growth restriction of piglets caused by iron deficiency. This study aimed to evaluate the effects of maternal dietary supplementation with EP-Fe on reproductive performance and placental iron transmission of sows, as well as growth performance of piglets. Sixty pregnant sows at the 95th day of gestation were randomly divided into control group and EP-Fe group (EP-Fe, 139 mg kg-1). Blood samples of sows and neonatal piglets, colostrum, and tissue samples were collected on the day of delivery. The animal experiment ended at the 21st day of post-delivery. Results showed that maternal dietary EP-Fe increased colostrum iron (P < 0.05) of sows, as well as final litter weight (P < 0.05) and average daily weight of piglets (P < 0.05) during days 1-21 of lactation, as well as iron and manganese content in umbilical cord blood (P < 0.05) and hepatic iron of neonatal piglets (P < 0.01), and decreased fecal iron (P < 0.001), serum calcium (P < 0.05), phosphorus (P < 0.05), and zinc (P < 0.01) in the parturient sow. RT-qPCR results showed that Fpn1 and Zip14 in placenta, as well as TfR1 and Zip14 in duodenum of neonatal piglets, were activated by maternal EP-Fe supplement. These findings suggest that maternal dietary EP-Fe could increase iron storage of neonatal piglets via improving placental iron transport and iron secretion in colostrum, thus enhancing the growth performance of sucking piglets.

2.
Biol Trace Elem Res ; 199(6): 2295-2302, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32845448

RESUMO

The objective of this study was to compare the effects of nanoselenium (NS) and selenium yeast (SY) on the performance, egg selenium (Se) concentration, and anti-oxidative capacity of hens. A total of 216 Brown Hy-line hens (29-week old) were randomly allocated into three treatments (6 replicate/treatment, 12 hens/replicate). The pre-trial period lasted 7 days, and the experimental period lasted 35 days. Dietary treatments included corn-soybean meal basal diet (containing 0.16 µg Se/g, as control group), and basal diet supplemented with 0.3 mg Se/kg diet (Se was from NS or SY), called as SY group or NS group, respectively. At the end of the experiment, one hen per replicate from each treatment was slaughtered. Liver, spleen, and kidney tissues were sampled for the determination of Se concentrations. The results showed that NS or SY supplement significantly improved feed conversion ratio (P < 0.05), soft broken egg rate (P < 0.05), and the serum T-AOC value (P < 0.05) when compared with control group. Remarkably, the deposition of Se increased significantly (P < 0.05) and equivalently in egg, liver, and kidney of hens supplemented with both NS and SY. Interestingly, SY supplement also enhanced the serum CAT and SOD activities (P < 0.05), NS but not SY significantly reduced serum MDA (P < 0.05), whereas RT-PCR results did not show significant differences in the mRNA levels of antioxidant genes among three groups (P > 0.05). Taken together, dietary supplemented with SY or NS improved the Se deposition in eggs, liver and kidney of laying hens, increased antioxidant activity, and NS supplement had greater Se deposition in the kidney tissue than SY supplement. SY or NS supplement could be considered to be applied for Se-enriched egg production.


Assuntos
Selênio , Fermento Seco , Ração Animal/análise , Animais , Galinhas , Dieta , Suplementos Nutricionais , Ovos , Feminino , Saccharomyces cerevisiae , Selênio/farmacologia
3.
J Sci Food Agric ; 99(13): 6108-6113, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31177538

RESUMO

BACKGROUND: Nucleotides are key constituents of milk, where they are utilized in cell replication, although there are limited studies for weaned piglets. This study evaluated the effects of uridine monophosphate (UMP) with uridine (UR) feed supplementation on the intestinal development and nucleotide transport in weaned piglets. RESULTS: Supplementation with UMP significantly increased (P < 0.05) plasma glucose, and UR supplementation significantly reduced (0.05 < P < 0.10) the plasma total cholesterol (TC) of piglets when compared with that of the control group, although non-significant difference (P > 0.05) in growth performance was observed among three groups. Piglets fed supplementary UR exhibited greater (P < 0.05) crypt depth in the duodenum and ileum when compared with those in the supplementary UMP and control groups. Real-time quantitative polymerase chain reaction (RT-qPCR) results revealed that UR supplementation increased (P < 0.05) the relative mRNA levels of genes encoding the transmembrane proteins ZO-1 and occludin in the duodenum mucosa, and ZO-1 in the jejunum mucosa (P < 0.05). Similarly, UR supplementation increased (P < 0.05) expression of solute carriers SLC28A1 and SLC29A1 in the duodenum mucosa. Conversely, claudin-1 expression in the duodenum mucosa was inhibited (P < 0.05) by dietary supplementation with UMP or UR. CONCLUSION: Collectively, our data indicated that dietary supplementation with UMP or UR was conducive to stimulating intestinal development and promoting nucleotide transport in weaned piglets. © 2019 Society of Chemical Industry.


Assuntos
Intestino Delgado/crescimento & desenvolvimento , Nucleotídeos/metabolismo , Suínos/crescimento & desenvolvimento , Uridina Monofosfato/metabolismo , Uridina/metabolismo , Animais , Transporte Biológico , Claudina-1/genética , Claudina-1/metabolismo , Suplementos Nutricionais/análise , Feminino , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Masculino , Suínos/genética , Suínos/metabolismo , Desmame
4.
Biol Trace Elem Res ; 189(2): 548-555, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30232747

RESUMO

Supplementation of selenium (Se) is a common practice in the poultry industry via sodium selenite (SS) and selenium yeast (SY), while the effects of nano-selenium (NS) on laying hens are poorly known. This study aimed to compare the effects of NS, SS, and SY on productivity; selenium (Se) deposition in eggs; and antioxidant capacity in laying hens. A total of 288 30-week-old Brown Hy-line laying hens were randomly assigned into four dietary treatments, which included corn-soybean meal basal diet (Con) without Se sources and basal diets supplemented with 0.3 mg Se/kg as SS, SY, or NS, respectively. The results exhibited that Se-supplemented treatments achieved greater egg production, egg weight, and daily egg mass, also better feed conversion ratio than Con group (p < 0.05). Se supplementation significant increased egg Se concentration and decreased the egg Se deposition efficiency (p < 0.05), while SY or NS supplementation had higher Se deposition efficiency than SS group at 35 days (p < 0.05). Moreover, serum glutathione peroxidase (GSH-Px) activity increased in SS or NS group compared to Con group (p < 0.05). The glutathione peroxidase 4 (GPX-4) mRNA levels in liver were significantly higher (p < 0.05) in SS or SY group than in NS group, and mRNA levels of the methionine (Met) metabolism gene glycine N-methyltranserfase (GNMT) were markedly upregulated (p < 0.05) in SY group compared to SS or NS group. Taken together, the results revealed Se from SY is deposited into eggs more efficiently than Se from NS or SS, probably via enhancing the route of Met metabolism. Meanwhile, it might be concluded that SS or SY supplementation directly regulated GSH-Px activity via enhancing GPx4 level, whereas NS via GPx1, thus affecting body oxidation and development.


Assuntos
Antioxidantes/metabolismo , Selênio/análise , Selênio/metabolismo , Animais , Galinhas , Suplementos Nutricionais , Ovos , Feminino , Glutationa Peroxidase/metabolismo , Selenito de Sódio/análise , Selenito de Sódio/metabolismo
5.
Biochem Biophys Res Commun ; 505(2): 624-630, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278888

RESUMO

To investigate effects of Ca level varying with feeding time daily in sows during late pregnancy on placental lipid metabolism and transport in pigs, sixty pregnant sows were assigned to 3 groups: the CON group was fed low-Ca diet with 11.25 g CaCO3 at 0600 h and 1500 h, H-L group was fed low-Ca diet with 22.5 g CaCO3 at 0600 h and low-Ca diet at 1500 h, and L-H group was fed low-Ca diet at 0600 h and low-Ca diet with 22.5 g CaCO3 at 1500 h, respectively. Serum from sows and umbilical cord and placenta were collected during delivery. Results showed that, compared with the CON group, H-L feeding significantly increased maternal serum total triglyceride (TG) and umbilical serum high-density lipoprotein (HDL) (P < 0.05). The results showed that long chain fatty acid (FA) contents in placenta were significantly increased in H-L and L-H groups (P < 0.05). Experiments on genes involved in glycolipid metabolism showed that H-L or L-H feeding inhibited mRNA expression of GLUT3, GLUT4, FAS, FABP1, FABPpm, FAT/CD36, while activated the mRNA expression of FASD1, FASD2 and SCD in placenta (P < 0.05). In addition, experiments on genes involved in biological clock showed that L-H feeding sequence activated the mRNA expression of per1 and clock, while H-L and L-H feeding sequence inhibited mRNA expression of per2 in placenta (P < 0.05). It is concluded that maternal supplementation with Ca varying with feeding time daily during late pregnancy affects placental lipid metabolism and transport in pigs by regulating the mRNA expression related to lipid metabolism and the circadian clock.


Assuntos
Cálcio da Dieta/administração & dosagem , Metabolismo dos Lipídeos , Placenta/metabolismo , Animais , Transporte Biológico , Relógios Circadianos/genética , Ácidos Graxos/metabolismo , Feminino , Glicolipídeos/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Suínos
6.
J Pharm Anal ; 3(3): 215-220, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29403820

RESUMO

Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total of 40 (hydrodistillation), 32 (HS-SPME) and 37 (diethyl ether extraction) compounds were respectively identified by gas chromatography-mass spectrometry (GC/MS) and 22 compounds were overlapped, including α-farnesene, γ-muurolene, 2,6-dimethyl-6-(4-methyl-3-pentenyl)bicyclo[3.1.1]hept-2-ene, eucalyptol and cadina-1(10), 4-diene and so forth, varying in relative contents. HS-SPME is fast, sample saving and solvent-free and it also can achieve similar profiles as those from hydrodistillation and solvent extraction. Therefore, it can be the priority for extracting volatile components from medicinal plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA