Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603050

RESUMO

PURPOSE: The goal of this study was to propose a knowledge-based planning system which could automatically design plans for lung cancer patients treated with intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: From May 2018 to June 2020, 612 IMRT treatment plans of lung cancer patients were retrospectively selected to construct a planning database. Knowledge-based planning (KBP) architecture named αDiar was proposed in this study. It consisted of two parts separated by a firewall. One was the in-hospital workstation, and the other was the search engine in the cloud. Based on our previous study, A­Net in the in-hospital workstation was used to generate predicted virtual dose images. A search engine including a three-dimensional convolutional neural network (3D CNN) was constructed to derive the feature vectors of dose images. By comparing the similarity of the features between virtual dose images and the clinical dose images in the database, the most similar feature was found. The optimization parameters (OPs) of the treatment plan corresponding to the most similar feature were assigned to the new plan, and the design of a new treatment plan was automatically completed. After αDiar was developed, we performed two studies. The first retrospective study was conducted to validate whether this architecture was qualified for clinical practice and involved 96 patients. The second comparative study was performed to investigate whether αDiar could assist dosimetrists in improving the quality of planning for the patients. Two dosimetrists were involved and designed plans for only one trial with and without αDiar; 26 patients were involved in this study. RESULTS: The first study showed that about 54% (52/96) of the automatically generated plans would achieve the dosimetric constraints of the Radiation Therapy Oncology Group (RTOG) and about 93% (89/96) of the automatically generated plans would achieve the dosimetric constraints of the National Comprehensive Cancer Network (NCCN). The second study showed that the quality of treatment planning designed by junior dosimetrists was improved with the help of αDiar. CONCLUSIONS: Our results showed that αDiar was an effective tool to improve planning quality. Over half of the patients' plans could be designed automatically. For the remaining patients, although the automatically designed plans did not fully meet the clinical requirements, their quality was also better than that of manual plans.

2.
J Neurotrauma ; 40(13-14): 1366-1375, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062757

RESUMO

Abstract Prognostic prediction of traumatic brain injury (TBI) in patients is crucial in clinical decision and health care policy making. This study aimed to develop and validate prediction models for in-hospital mortality after severe traumatic brain injury (sTBI). We developed and validated logistic regression (LR), LASSO regression, and machine learning (ML) algorithms including support vector machines (SVM) and XGBoost models. Fifty-four candidate predictors were included. Model performance was expressed in terms of discrimination (C-statistic) and calibration (intercept and slope). For model development, 2804 patients with sTBI in the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) China Registry study were included. External validation was performed in 1113 patients with sTBI in the CENTER-TBI European Registry study. XGBoost achieved high discrimination in mortality prediction, and it outperformed logistic and LASSO regression. The XGBoost model established in this study also outperformed prediction models currently available, including the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) core and International Mission for Prognosis and Analysis of Clinical Trials (CRASH) basic models. When including 54 variables, XGBoost and SVM reached C-statistics of 0.87 (95% confidence interval [CI]: 0.81-0.92) and 0.85 (95% CI: 0.79-0.90) at internal validation, and 0.88 (95% CI: 0.87-0.88) and 0.86 (95% CI: 0.85-0.87) at external validation, respectively. A simplified version of XGBoost and SVM using 26 variables selected by recursive feature elimination (RFE) reached C-statistics of 0.87 (95% CI: 0.82-0.92) and 0.86 (95% CI: 0.80-0.91) at internal validation, and 0.87 (95% CI: 0.87-0.88) and 0.87 (95% CI: 0.86-0.87) at external validation, respectively. However, when the number of variables included decreased, the difference between ML and LR diminished. All the prediction models can be accessed via a web-based calculator. Glasgow Coma Scale (GCS) score, age, pupillary light reflex, Injury Severity Score (ISS) for brain region, and the presence of acute subdural hematoma were the five strongest predictors for mortality prediction. The study showed that ML techniques such as XGBoost may capture information hidden in demographic and clinical predictors of patients with sTBI and yield more precise predictions compared with LR approaches.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Escala de Coma de Glasgow , Prognóstico , Algoritmos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA